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Introduction and Overview

In recent years, a lot of interest has been drawn by the statistical analysis of spherical
isotropic random fields. These investigations have been motivated by a wide array
of applications arising in many different areas, including, in particular, Cosmology,
Astrophysics, Geophysics, Climate and Atmospheric Sciences, and many others, see,
e.g., [4, 8, 19, 20, 24, 25, 26, 39, 61, 62]. Most papers in Cosmology and Astrophysics
have focused so far on spherical random fields with no temporal dependence; the
next generation of cosmological experiments is however going to make this aspect
much more relevant. On the other hand, applications in Climate and Atmospheric
Sciences, Geophysics, and several other areas have always been naturally modeled in
terms of a double-dependence in the spatial and temporal domains. In many works
of these fields, the attention has been focused on the definition of wide classes of
space-time covariance functions, and then on the derivation of likelihood functions;
the literature on these themes is vast and we make no attempt to a complete list of
references, see, for instance, [8, 20, 26, 33, 62] and the references therein.
The main purpose of this thesis is to address some foundational questions regarding
time-dependent spherical random fields and, then, to investigate some new estimation
procedures for the class of spherical functional autoregressions.
More precisely, we start in Chapter 1 with a review of a number of recent develop-
ments in probability and mathematical statistics, which will be instrumental for the
derivation of our results in the chapters to follow. Indeed, after recalling some basic
facts on stationary time series and their spectral representation (see [12]), we review
some less standard materials on harmonic expansion of spherical random fields (see
[43]). We introduce here the orthonormal system of spherical harmonics and we
discuss some properties of the corresponding family of random coefficients. In this
same chapter we review also some recent, very powerful techniques to establish
quantitative central limit theorems (the so-called Stein-Malliavin approach, [49]) and
the basic tools of operator theory for functional data analysis (see [32]). All these
instruments will be deeply exploited in the chapters to follow.
In Chapter 2, we investigate harmonic properties of time-varying spherical random
fields. This chapter builds on earlier results [56, 55], see also [8], and it is principally
divided into two main parts. The first section provides some results on a double
spectral representation, with respect to both the temporal and spatial components
of the field, while the other section focuses on properties of a specific class of sphere-
cross-time random fields which can be also interpreted as functional autoregressive
processes (see [10]) taking values in L2(S2).
In Chapter 3, we present our first estimation procedure for functional spherical
autoregressions, see also [18]. In particular, we exploit isotropy assumptions and
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the so-called duplication property of the spherical harmonics basis to derive a
more transparent representation of these autoregressions; hence we transform a
nonparametric kernel estimation problem into the investigation of a growing sequence
of spectral parameters. We are then able to investigate three kinds of asymptotics:
we first establish a general consistency result (with rates) in L2 and L∞ norms; we
then prove a quantitative central limit theorem for our nonparametric estimator, and
finally, under stronger smoothness conditions, we prove a weak convergence result
(finite dimensional distributions and tightness) for the kernel estimators. These
results are also validated by a small numerical experiment.
Chapter 4 is developed under the same framework as Chapter 3, but imposing
some further sparsity constraints. In particular, we are assuming that only a
limited range of multipoles (i.e., spatial frequencies) are actually relevant in the
functional autoregressions, and then we implement a convex regularization procedure
of LASSO (Least Absolute Shrinkage and Selection Operator) type, similarly to a
recent important contribution by [7]. We are then able to establish concentration
results, holding with probability arbitrarily close to one, in L2 and L∞ norms.
The numerical results given in this thesis are obtained by means of the python
package healpy, based on the so-called HEALPix software (see [27]). While this
software is now very popular and standard in Cosmology and Astrophysics, its use in
the mathematical and statistical community has so far been rather limited; because
of this, in Appendix A, we provide a quick guide explaining its basic operating
principles.
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Chapter 1

Background

1.1 Spectral Analysis of Stationary Time Series

In this section we recall some basic notions of time series analysis, such as the
concepts of stationarity and the popular Spectral Representation Theorem, together
with some examples. Even if already widely known, they will be constantly used
throughout the thesis; so we report them for completeness and better readability.
For a in-depth discussion on these topics, see, for example, [12].

The fundamental idea of time series analysis is to model the data obtained from
observations collected sequentially over time as a realization (or part of a realization)
of a stochastic process {Xt, t ∈ T } defined on a complete probability space (Ω,F,P),
where T is generally a subset of R. In particular, we will focus on the specific case
T = Z. We shall frequently use the term time series to mean both the data and the
process of which it is a realization.

1.1.1 Stationary Time Series

We start with the two standard definitions of stationarity and second-order properties
of stationary processes.

Definition 1.1.1 (see, e.g., [12]). The process {Xt, t ∈ Z} is said to be strongly
stationary if the joint distributions of (Xt1 , . . . , Xtk)′ and (Xt1+h, . . . , Xtk+h)′ are
the same for all positive integers k and for all t1, . . . , tk, h ∈ Z.

We consider only finite variance processes, for which the autocovariance function
γ(t, s) = Cov[Xt, Xs] is well-defined.

Definition 1.1.2 (see, e.g., [12]). The process {Xt, t ∈ Z}, is said to be stationary
if

(i) E|Xt|2 <∞, for all t ∈ Z,

(ii) E[Xt] = m, for all t ∈ Z,

(iii) γ(t, s) = γ(t+ h, s+ h), for all t, s, h ∈ Z.



2 1. Background

If {Xt} is strongly stationary it immediately follows, on taking k = 1 in Definition
1.1.1, that Xt has the same distribution for each t ∈ Z. If E|Xt|2 <∞, this implies
in particular that E[Xt] and V[Xt] are both constant. Moreover, taking k = 2 in
Definition 1.1.1, we find that Xt+h and Xt have the same joint distribution and
hence the same covariance for all h ∈ Z. Thus a strongly stationary process with
finite second moments is stationary. The converse of the previous statement is not
true; however, in the Gaussian case weak stationarity implies strong stationarity
(see, for instance, [12].
It is worth to notice that in both cases γ(t, s) = γ(t− s, 0), t, s ∈ Z. It is therefore
convenient to redefine the autocovariance function of a stationary process as the
function of just one variable,

γ(h) ≡ γ(h, 0) = Cov[Xt+h, Xt], h, t ∈ Z,

that is, the autocovariance function of {Xt} at lag h. Clearly, γ(0) ≥ 0; moreover,
|γ(h)| ≤ γ(0), as a consequence of Cauchy-Schwartz inequality, γ(·) is an even
function, i.e γ(h) = γ(−h), h ∈ Z. As every autocovariance function, it is also
positive definite, namely,

∑n
i,j=1 aiγ(i− j)aj ≥ 0 for all positive integers n and for

all vectors (a1, . . . , an)′ ∈ Rn.
The last two properties relate to a standard characterization of autocovariance
functions for stationary time series (see [12, Theorem 4.1.1]). Moreover, Herglotz’s
theorem, which we recall here, characterizes them as those functions that have a
frequency domain representation with respect to a finite Radon measure.

Theorem 1.1.3 (Herglotz’s Theorem, [12]). A complex-valued function γ(·) defined
on the integers is positive definite if and only if

γ(h) =
ˆ π

−π
eihλdF (λ), for all h ∈ Z,

where F (·) is a right-continuous, non-decreasing, bounded function on [−π, π] and
F (−λ) = 0.

Here, the so-called spectral distribution function F (·) (with F (−π) = 0) is uniquely
determined by γ(·). Furthermore, it is well-known that if {Xt} is a stationary time
series whose autocovariance function γ(·) satisfies

∑∞
h=−∞ |γ(h)| < ∞, then the

related spectral density exists and it is defined as

f(λ) := 1
2π

∞∑
h=−∞

e−ihλγ(h), π ≤ λ ≤ π.

A very wide class of stationary processes is provided by the so-called autoregressive-
moving average processes, which will play a key role throughout the next chapters. We
recall that an autoregressive-moving average process of order (p, q) (or ARMA(p, q))
can be generated by using a white noise {Zt, t ∈ Z} (for a formal definition, see [12,
Chapter 3]) as the forcing term in a set of linear difference equations of the form

φ(B)Xt = θ(B)Zt, (1.1.1)
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where φ(·) and θ(·) are the p-th and q-th degree polynomials

φ(z) = 1− φ1z − · · · − φpzp and θ(z) = 1 + θ1z + · · ·+ θqz
q,

and B is the backward shift operator defined by BjXt = Xt−j , t ∈ Z.
Particular cases of such a process can be obtained by letting one of the two polyno-
mials constant and equal to 1. For instance, if φ(z) ≡ 1, we obtain a moving-average
process of order q (or MA(q)) described by

Xt = θ(B)Zt; (1.1.2)

whereas, If θ(z) ≡ 1, then we have the so-called autoregressive process of order p (or
AR(p)) with

φ(B)Xt = Zt, (1.1.3)
For a MA(q) process, it is quite clear that the difference equations (1.1.2) has a
unique stationary solution; instead, in the last case (as in the general case) the
existence and uniqueness of a stationary solution of (1.1.3) needs closer investigation.
In the next few lines, we summarily discuss the conditions to ensure the existence of
a unique stationary solution of the ARMA equations; this will be useful in Chapter
2, specifically Section 2.2, to have an insight into the proof of the same results
generalized to a particular class of functional autoregressive processes.
First recall the definition of a causal ARMA process; see also in [12, Chapter 3].

Definition 1.1.4. An ARMA(p, q) process defined by the equations φ(B)Xt =
θ(B)Zt, t ∈ Z, is said to be causal if there exists a sequence of constants {ψj} such
that ∑∞j=0 |ψj | <∞ and

Xt =
∞∑
j=0

ψjZt−j , t ∈ Z, (1.1.4)

where the series converges in mean square and absolutely with probability one.
It should be noted that causality is a property not of the process {Xt} alone but
rather of the relationship between the two processes {Xt} and {Zt} appearing in
the defining ARMA equations.

Theorem 1.1.5. Let {Xt. t ∈ Z} be an ARMA(p, q) process for which the polynomi-
als φ(·) and θ(·) have no common zeroes. Then {Xt} is causal if and only if φ(z) 6= 0
for all z ∈ C such that |z| ≤ 1. The coefficients {ψj} in (1.1.4) are determined by
the relation

ψ(z) =
∞∑
j=0

ψjz
j = θ(z)/φ(z), |z| ≤ 1. (1.1.5)

The proof is given in [12, Section 3.1], whereas the numerical calculation of the
coefficients {ψj} is discussed [12, Section 3.3].

Remark 1.1.6. The first part of the proof of Theorem 1.1.5 shows that if {Xt}
is a stationary solution of the ARMA equations with φ(z) 6= 0 for |z| ≤ 1, then
we must have Xt =

∑∞
j=0 ψjZt−j, where {ψj} is defined by (1.1.5). Conversely,

if Xt =
∑∞
j=0 ψjZt−j, then φ(B)Xt = φ(B)ψ(B)Zt = θ(B)Zt. Thus the process

{ψ(B)Zt} is the unique stationary solution of the ARMA equations if φ(z) 6= 0 for
|z| ≤ 1.
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1.1.2 The Spectral Representation Theorem on Z

Now, we report the statement of the Spectral Representation Theorem for stationary
processes and the sketch of the proof.

Theorem 1.1.7 (The Spectral Representation Theorem on Z, see [12]). If {Xt, t ∈ Z}
is a stationary sequence with mean zero and spectral distribution function F (·), then
there exists an orthogonal-increment process {Z(λ), −π ≤ λ ≤ π} such that

E|Z(λ)− Z(−π)|2 = F (λ), −π ≤ λ ≤ π,

and
Xt =

ˆ π

−π
eitλdZ(λ), with probability one. (1.1.6)

The right-hand side is a stochastic integral with respect to an orthogonal-increment
process, a precise definition of which is given, for instance, in [12, Chapter 4].
The proof of the representation (1.1.6) will be achieved by defining a certain
isomorphism I between the closed subspaces span {Xt, t ∈ Z} of L2(Ω,P) and
span {exp(it·), t ∈ Z} of L2([−π, π], dF ). This isomorphism, defined as a linear
extension of the mapping Xt 7→ eit·, will provide a link between random variables in
the "time domain" and functions on [−π, π] in the "frequency domain". In particular,

〈Xt, Xs〉L2(Ω,P) := E[XtXs] =
ˆ π

−π
eitλe−isλdF (λ),

and one also finds that

Xt = I−1(eit·) =
ˆ π

−π
eitλdZ(λ),

taking Z(λ) = I−1(1[−π,λ)). Note in particular that the linear space of functions
exp(it·) is dense in L2([−π, π], dF ) and the indicator function of the subsets of
[−π, π] always belongs to L2([−π, π], dF ) if F (·) is the distribution function of a
nonatomic measure on [−π, π]. The complete proof can be found, for example, in
[12, Chapter 4].

Example 1.1.8. Under the same assumptions of Theorem 1.1.5, a causal ARMA(p, q)
process has spectral density

f(λ) = σ2

2π
|θ(e−iλ)|2

|φ(e−iλ)|2 , π ≤ λ ≤ π,

and the following spectral representation holds

Xt =
ˆ π

−π
eitλ

θ(e−iλ)
φ(e−iλ)dW (λ),

where the orthogonal-increment process {W (λ), −π ≤ λ ≤ π} is such that

Zt =
ˆ π

−π
eitλdW (λ)

(see, e.g., [12, Theorem 4.4.2 and Theorem 4.10.1]).
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1.2 Harmonic Analysis on the Sphere
This section includes some well-established results concerning harmonic analysis
on the two-dimensional sphere S2, with special attention to isotropic random fields
defined on it for which a Spectral Representation Theorem holds. The reader is
referred for further details to [2, 43] and the references therein. These concepts lay
the foundation for our analysis on spherical random fields which show a temporal
dependence, the main focus of this dissertation.

Let L2(S2) := L2(S2, dx) be the space of square-integrable complex-valued functions
over the unit sphere S2 =

{
x ∈ R3 : ‖x‖ = 1

} 1 with respect to the uniform Lebesgue
measure, since now on denoted by dx. When endowed with the inner product

〈f, g〉L2(S2) =
ˆ
S2
f(x)g(x)dx,

L2(S2) is a separable Hilbert space; the Spectral Theorem for compact self-adjoint
operators (see Section 1.4) then entails that L2(S2) can be decomposed into the
direct sum of orthogonal spaces spanned by eigenfunctions of the corresponding
Laplacian. More precisely,

L2(S2) =
∞⊕
`=0
Y`,

where Y` is spanned by the eigenfunctions of the spherical Laplacian associated with
the eigenvalue −`(`+ 1). These eigenfunctions are called spherical harmonics and
they satisfy

∆S2f` = −`(`+ 1)f`, ` ≥ 0,
where, as usual,

∆S2 := 1
sinϑ

∂

∂ϑ

(
sinϑ ∂

∂ϑ

)
+ 1

sin2 ϑ

∂

∂ϕ2 .

A standard orthonormal basis for the eigenspace Y` is chosen to be {Y`,m, m = −`, . . . , `},
and then any f ∈ L2(S2) admits a Fourier series representation of the form

f(x) =
∞∑
`=0

∑̀
m=−`

a`mY`,m(x), in the L2-sense.

An explicit expression for Y`,m : S2 → C can be given, with some abuse of notation,
in spherical coordinates by (see [43, page 64])

Y`,m(ϑ, ϕ) =


√

2`+ 1
4π

(`−m)!
(`+m)!P`,m(cosϑ) exp(imϕ) m ≥ 0,

(−1)mY`,−m(ϑ, ϕ) m < 0,

where ϑ ∈ [0, π] and ϕ ∈ [0, 2π) are the colatitude and longitude respectively, and
P`,m : [−1, 1] → R is the associated Legendre function of degree ` and order m,
which is defined in terms of the `-th Legendre polynomial P` : [−1, 1]→ R, i.e.,

P`,m(u) = (−1)m(1− u2)m/2 d
m

dum
P`(u),

1We shall use ‖ · ‖ and 〈·, ·〉 to denote the Euclidean norm and inner product on R3 respectively.
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P`(u) = 1
2``!

d`

du`
(u2 − 1)`,

for u ∈ [−1, 1] (see also [1, Chapter 8]). Here, we display the first few:

Y0,0(ϑ, ϕ) =
√

1
4π

Y1,0(ϑ, ϕ) =
√

3
4π cosϑ

Y1,1(ϑ, ϕ) =
√

3
8π sinϑeiϕ

Y2,0(ϑ, ϕ) =
√

5
16π (3 cos2 ϑ− 1)

Y2,1(ϑ, ϕ) =
√

15
8π sinϑ cosϑeiϕ

Y2,2(ϑ, ϕ) =
√

15
32π sin2 ϑei2ϕ.

Remark 1.2.1. Legendre polynomials are orthogonal over [−1, 1], i.e.,
ˆ −1

−1
P`(u)P`′(u)du = 2

2`+ 1δ
`′
` ,

here δba is the Kronecker delta function (see [67]). Moreover, the sequence of Legendre
polynomials forms an orthogonal basis for the L2 space of real-valued functions over
[−1, 1]. Note that P`(1) = 1, for all ` ≥ 0.
One of the most fundamental property of spherical harmonics is expressed by the
following addition formula: for any x, y ∈ S2,

∑̀
m=−`

Y`,m(x)Y`,m(y) = 2`+ 1
4π P`(〈x, y〉); (1.2.1)

for a proof (based on group representation theory) we refer to [43, Chapter 3]. As a
consequence, a duplication property is satisfied, i.e.,ˆ

S2

2`+ 1
4π P`(〈x, y〉)

2`+ 1
4π P`′(〈y, z〉)dy = 2`+ 1

4π P`(〈x, z〉)δ`
′
` . (1.2.2)

Remark 1.2.2. We recall that an orthonormal basis for L2(S2) restricted to real-
valued functions can be defined by setting

Ỹ`,m(ϑ, ϕ) =


√

2(−1)m ReY`,m(ϑ, ϕ) m > 0,
Y`,0(ϑ, ϕ) m = 0,
√

2(−1)m ImY`,|m|(ϑ, ϕ) m < 0.

These functions have the same orthonormality properties as the complex ones above,
and also the addition formula (1.2.1) holds. Note that the central spherical harmonics

Y`,0(ϑ, ϕ) =

√
2`+ 1

4π P`(cosϑ), ` ≥ 0,

are real-valued functions.
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The real basis of spherical harmonics is common in the literature; examples are
given in [36, 74, 75]. Throughout this thesis, we will use both the complex and real
systems, with the same notation. However, when not specified, we will refer to the
former.

Figure 1.1. Examples of real spherical harmonics, for ` = 2, 4, 8, m = `/2, `.

1.2.1 Isotropic Random Fields on the Sphere

We now consider a random field
{
T (x), x ∈ S2} defined on the sphere. This means

that T : S2 × Ω → R is a B(S2) × F-measurable mapping, for some appropriate
probability space (Ω,F,P); B(S2) denoting the Borel σ-field on the sphere.
Through this subsection we meanly refer to [43]. In parallel to Section 1.1, we recall
the definition of strong and weak isotropy and related second-order properties.

Definition 1.2.3 (see, e.g., [6, 43]). The spherical random field
{
T (x), x ∈ S2} is

said to be strongly isotropic if, for every k ∈ N, every x1, . . . , xk ∈ S2 and every
g ∈ SO(3) (the special group of rotations in R3) we have that (T (x1), . . . , T (xk))′
and (T (gx1), . . . , T (gxk))′ have the same joint distribution.

For spherical random fields in L2(Ω) := L2(Ω,P), i.e., with finite variance and
therefore a well-defined covariance function Γ(x, y) := Cov[T (x), T (y)], we have the
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following definition:

Definition 1.2.4 (see, e.g., [43]). The spherical random field
{
T (x), x ∈ S2} is

said to be isotropic if
(i) E|T (x)|2 <∞, for all x ∈ S2,

(ii) E[T (x)] = const, for all x ∈ S2,

(iii) Γ(x, y) = Γ(gx, gy), for all x, y ∈ S2, g ∈ SO(3).
Remark 1.2.5. As for stationarity, a strongly isotropic field with finite second
moment is also (weakly) isotropic and, if the spherical field is Gaussian, the two
notions are equivalent.
Without loss of generality, from now on, we will assume E[T (x)] = 0, uniformly.

Remark 1.2.6. Note that if
{
T (x), x ∈ S2} is isotropic, one has that

E
[ˆ

S2
|T (x)|2dx

]
= 4πE|T (x0)|2 <∞,

for any fixed x0 ∈ S2. This implies that there exists a F-measurable set Ω′ of
P-probability 1 such that, for every ω ∈ Ω′, T (·, ω) is an element of L2(S2). In
addition, as pointed out in [44], the field can be shown to be mean-square continuous,
meaning that

lim
x→x0

E[T (x)− T (x0)]2 = 0, ∀x0 ∈ S2.

By isotropy, we have clearly that

Γ(x, y) = Γ(x′, y′),

for all pairs {(x, y), (x′, y′)} such that 〈x, y〉 = 〈x′, y′〉. Hence, the covariance is really
a function of the spherical geodesic distance between x and y, i.e.,

dS2(x, y) = arccos〈x, y〉;

moreover, it is a positive definite continuous function. With some abuse of notation,
we will denote with Γ also the "reduced" version, defined on [−1, 1].
I. J. Schoenberg in his seminal paper [64] characterized the class of positive definite
continuous function on [−1, 1]; see also [8] which offers a natural extension of
Schoenberg’s Theorem to the product space [−1, 1] × G, for G a locally compact
group. The result can be seen as the analogue of the Herglotz’s theorem (see Theorem
1.1.3) for stationary time series.

Theorem 1.2.7 (Schoenberg (1942), [64]). Assume Γ : [−1, 1] → R is a positive
definite continuous function. Then there exists a sequence of nonnegative weights
{C`, ` ≥ 0} such that for all z ∈ [−1, 1] we have

Γ(z) =
∞∑
`=0

C`
2`+ 1

4π P`(z).

With a slight abuse of notation, we can also write

Γ(x, y) = Γ(〈x, y〉) =
∞∑
`=0

C`
2`+ 1

4π P`(〈x, y〉). (1.2.3)
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1.2.2 The Spectral Representation Theorem on S2

In this subsection we see the Spectral Representation Theorem for isotropic random
fields on the sphere: in [43] is given as a special case of the Stochastic Peter-Weyl
Theorem; however, we report a different proof (see also [42, 69]), which does not
involve the Group Representation Theory and make clearer the affinity with the
time series case, since it is based on the construction of a linear isometry between
span {T (x), x ∈ S2} and a closed subspace of L2(S2).

Theorem 1.2.8 (The Spectral Representation Theorem on S2, see [42, 43]). Let{
T (x), x ∈ S2} be a centred isotropic random field. Then, for every x ∈ S2,

T (x) =
∞∑
`=0

∑̀
m=−`

a`,mY`,m(x), (1.2.4)

in the L2(Ω) sense, that is, for every x ∈ S2,

lim
L→∞

E


T (x)−

L∑
`=0

∑̀
m=−`

a`,mY`,m(x)

2
 = 0.

The random coefficients {a`,m, ` ≥ 0, m = −`, . . . , `} satisfy

E[a`,ma`′,m′ ] = C`δ
`′
` δ

m′
m .

Remark 1.2.9. The decomposition (1.2.4) is also shown to hold in the sense of
L2(S2 × Ω) := L2(S2 × Ω, dx⊗ P), that is,

lim
L→∞

E
∥∥∥∥T − L∑

`=0

∑̀
m=−`

a`,mY`,m

∥∥∥∥2

L2(S2)
= 0.

Indeed, for each ω ∈ Ω′ (see Remark 1.2.6),

ˆ
S2

∣∣∣∣∣∣T (x, ω)−
L∑
`=0

∑̀
m=−`

a`,m(ω)Y`,m(x)

∣∣∣∣∣∣
2

dx =
∞∑

`=L+1

∑̀
m=−`

|a`,m(ω)|2

≤
∞∑
`=0

∑̀
m=−`

|a`,m(ω)|2

=
ˆ
S2
|T (x, ω)|2 dx.

Then, by dominated convergence,

E

∥∥∥∥∥∥T −
L∑
`=0

∑̀
m=−`

a`,mY`,m

∥∥∥∥∥∥
2

→ 0, L→∞. (1.2.5)
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Proof. Let T0 be the complex linear space spanned by all finite linear combinations
of the T (x)’s,

T0 :=


n∑
j=1

cjT (xj) : n ∈ N, cj ∈ C, xj ∈ S2

 ⊂ L2(Ω), (1.2.6)

and T be the closure of T0 in L2(Ω). Now, define the linear operator J by linear
extension of the mapping

T (x) 7→
∞∑
`=0

2`+ 1
4π

√
C`P`(〈x, ·〉);

note that J : M0 → L2(S2) since∥∥∥∥∥
∞∑
`=0

2`+ 1
4π

√
C`P`(〈x, ·〉)

∥∥∥∥∥
2

L2(S2)

=
ˆ
S2

∞∑
`=0

2`+ 1
4π

√
C`P`(〈x, y〉)

∞∑
`′=0

2`′ + 1
4π

√
C`′P`′(〈x, y〉)dy

=
∞∑
`=0

2`+ 1
4π C` <∞,

where for the last equality we have used the duplication property (1.2.2) and the
fact that P`(1) = 1. Then, we have

〈 J T (x),J T (y) 〉L2(S2)

=
〈 ∞∑
`=0

2`+ 1
4π

√
C`P`(〈x, ·〉),

∞∑
`′=0

2`′ + 1
4π

√
C`′P`′(〈y, ·〉)

〉
L2(S2)

=
ˆ
S2

∞∑
`=0

2`+ 1
4π

√
C`P`(〈x, z〉)

∞∑
`′=0

2`′ + 1
4π

√
C`′P`′(〈y, z〉) dz

=
∑
``′

√
C`
√
C`′

ˆ
S2

2`+ 1
4π P`(〈x, z〉)

2`′ + 1
4π P`′(〈z, y〉) dz

=
∞∑
`=0

2`+ 1
4π C`P`(〈x, y〉),

again by the duplication property; thus,

〈 J T (x),J T (y) 〉L2(S2) = E[T (x)T (y)],

and, hence, J is well defined and it is a linear isometry. We extend its domain to T,
so that the image space of the extension is made by the closure of the span of all
functions which have the form

∞∑
`=0

2`+ 1
4π

√
C`P`(〈x, ·〉). (1.2.7)
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Now, we define a`,m :=
´
S2 T (x)Y`,m(x) dx and we verify that it is well defined as an

element of T. To this aim, we consider the sequence

a`,m(j) =
∑
k∈Nj

T (xjk)Y`,m(xjk)µ(Vjk),

where {Vjk} is a family of (exhaustive and disjoint) Voronoi cells, so that there exist
spherical caps and constants 0 < c < c′ such that (see, e.g., [5])

Bε/2(xjk) ⊂ Vjk ⊂ Bε(xjk), c2−j ≤ ε ≤ c′2−j , for all j, k.

By considering refining partitions
{
Vj′k

}
, we have that

E|a`,m(j)− a`,m(j′)|2

=E

 ∑
k∈Nj

{
T (xjk)Y`,m(xjk)− T (xj′k)Y`,m(xj′k)

}
µ(Vjk)

2

=E

 ∑
k∈Nj

{(
T (xjk)− T (xj′k)

)
Y`,m(xjk) + T (xj′k)

(
Y`,m(xjk)− Y`,m(xj′k)

)}
µ(Vjk)

2

≤2
∑
k∈Nj

∑
k′∈Nj

E
[(
T (xjk)− T (xj′k)

) (
T (xjk′)− T (xj′k′)

)
Y`,m(xjk)Y`,m(xjk′)µ(Vjk)µ(Vjk′)

]
+2

∑
k∈Nj

∑
k′∈Nj

E
[
T (xj′k)T (xj′k′)

(
Y`,m(xjk)− Y`,m(xj′k)

) (
Y`,m(xjk′)− Y`,m(xj′k′)

)
µ(Vjk)µ(Vjk′)

]
.

The first summand is bounded by

2 sup
k

E
∣∣T (xjk)− T (xj′k)

∣∣2∑
k∈Nj

Y`,m(xjk)µ(Vjk)


2

≤ 2 sup
k

E|T (xjk)− T (xjk)|2 sup
k

∣∣∣Y`,m(xjk)
∣∣∣2
∑
k∈Nj

µ(Vjk)


2

.

Since the Vjk’s form a partition of S2, the sum
∑
k∈Nj µ(Vjk) is smaller than the

surface of the sphere and so it is finite. It follows from the mean-square continuity of
{T (x), x ∈ s} that the first term converges to zero as j →∞; whereas, the second
is bounded by

2E|T (x)|2
∑
k∈Nj

(
Y`,m(xjk)− Y`,m(xj′k)

)
µ(Vjk)


2

≤2E|T (x)|2 sup
k

∣∣∣Y`,m(xjk)− Y`,m(xj′k)
∣∣∣2
∑
k∈Nj

µ(Vjk)


2

,

which converges to zero. Thus, {a`m(j)} is a Cauchy sequence, as claimed.
Note that

J a`,m =J
[ˆ

S2
T (x)Y`,m(x)dx

]
=
ˆ
S2
J T (x)Y`,m(x)dx
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=
ˆ
S2

∞∑
`=0

2`+ 1
4π

√
C`P`(〈x, ·〉)Y`,m(x)dx; (1.2.8)

then by the addition formula (1.2.1) and orthogonality property
´
S2 Y`′,m′(y)Y`,m(y) =

δ`
′
` δ

m′
m , (1.2.8) is equal to

√
C` Y`,m. Therefore, by the isometry property,

E[a`,ma`′m′ ] =
〈√

C` Y`,m,
√
C` Y`′,m′

〉
L2(S2)

= C`δ
`′
` δ

m′
m .

Moreover, since J is a linear isometry, it is injective and its inverse (restricted to
image space) J −1 is well defined. It follows immediately that

T (x) = J −1
[ ∞∑
`=0

2`+ 1
4π

√
C`P`(〈x, ·〉)

]
= J −1

 ∞∑
`=0

∑̀
m=−`

Y`,m(x)Y`,m(·)
√
C`


=
∞∑
`=0

∑̀
m=−`

Y`,m(x)J −1
[√

C` Y`,m(·)
]

=
∞∑
`=0

∑̀
m=−`

Y`,m(x)a`,m,

as claimed.

Remark 1.2.10. There are two important differences with time series analysis (see
also [42]):

• The Spectral Representation Theorem on S2 involves a series rather than an
integral: the reason is that S2 is compact, while Z is not. This is closely
related to group-theoretic results, in particular to the fact that representations
of compact groups are countable, while representations of noncompact groups,
such as Z, are uncountably many. Note that the sphere by itself is not a group,
but it can be realized as quotient space S2 = SO(3)/SO(2), see [43] for more
details.

• In the time series case there is a single deterministic component exp(itλ)
corresponding to each frequency λ, while in the spherical case there are 2`+ 1
spherical harmonics corresponding to a single multipole ` (i.e., spatial fre-
quency). Again, this has a simple explanation in terms of groups: indeed,
stationary processes on Z enjoy some form of invariance with respect to the
action of a commutative group (Xt → Xt+h), while isotropy implies invariance
in distribution with respect to the action of the noncommutative group SO(3).
It is a standard result of group representation theory that noncommutative
groups have multiple representations of the same dimension, and this leads
to the 2` + 1 spherical harmonics at the same multipole `. Note that the
complex exponentials satisfy ∂2

∂t2 exp(itλ) = −λ2 exp(itλ), in perfect analogy
with spherical harmonics.

1.3 Stein-Malliavin Normal Approximations
With Stein-Malliavin approach [49] we refer to an exhaustive theory based on
the combination of two probabilistic techniques, namely, the Malliavin calculus of
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variations and Stein’s method for probabilistic approximations, see also [54, 58, 53,
48, 51, 50]. The aim is to provide estimates of the distance between the laws of two
random objects, with a focus on normal approximations, as well as the corresponding
Central Limit Theorems (CLTs), i.e., convergence results displaying a Gaussian limit.
In particular, a crucial role is played by Hermite polynomial and the elements of the
so-called Gaussian Wiener chaos. We briefly discuss these topics in the next sections
to finally end up with the so-called Fourth Moment Theorem (FMT) [49, Chapter
5]; this powerful result will be applied in Chapter 3 to processes which exhibit an
integral representation as the one in Example 1.1.8, in order to obtain a Quantitative
Central Limit Theorem (QCLT), in Wasserstein metric. For a comprehensive treatise,
we refer to [49].

The Central Limit Theorem (with all its variants) is by all means among the most
important results in probability and statistics, since it allows to apply methods that
work for normal distributions to many problems involving other types of distributions.
For instance, if Yn is some statistical estimator with unknown distribution, which
satisfies a central limit theorem, then a Gaussian likelihood may be appropriate,
or approximated confidence intervals can be computed. However, it is not possible
to quantify directly the error one makes when replacing the actual law with its
asymptotics, because of the lack of information on the rate of convergence to the
limiting Gaussian distribution.

Example 1.3.1 (see, also, [42]). Take Z d= N (0, 1) and consider the two sequences

Yn = Z + Z2

exp(n) , Wn = Z + 103 × Z2

log log (n+ 1) , n ∈ N.

While for both sequences we have Yn, Wn
d→ N (0, 1), for a fixed n their distributions

will be completely different and Yn will be "closer" to Z than Wn.

It is therefore natural to try to extend the Central Limit Theorem by measuring a
suitable distance between probability laws, and investigating the rate of convergence
to zero of such distance.
Here, we quickly recall the notion of Wasserstein distance, which, as anticipated,
will be used in Chapter 3 to produce a quantitative version of the Central Limit
Theorem for some functional estimators. See [49] for other examples of probability
metrics and properties.

Definition 1.3.2 (Wasserstein Distance). Fix an integer d ≥ 1 and let G be the set
of all functions g : Rd → R, such that

‖g‖Lip ≤ 1, ‖g‖Lip := sup
x 6=y

x,y∈Rd

|g(x)− g(y)|
‖x− y‖

,

with ‖ · ‖ the usual Euclidean norm on Rd. Let X, Y be random variables with values
in Rd such that E|g(X)| < ∞, E|g(Y )| < ∞ for every g ∈ G. The Wasserstein
distance between the laws of X and Y is given by the quantity

dW (X,Y ) = sup
g∈G
|E[g(X)]− E[g(Y )]| . (1.3.1)
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1.3.1 Hermite Polynomials and Diagram Formulae

We first introduce Hermite polynomials which turn out to be a very useful tool when
computing moments and cumulants of Gaussian random variables.

Definition 1.3.3 (see, e.g, [43]). The sequence of Hermite polynomials {Hq(·), q ≥ 0}
on R, is defined via the following relations: H0(·) ≡ 1, and for q ≥ 1,

Hq(x) = (−1)qex2/2 d
q

dxq
e−x

2/2, x ∈ R.

Recall that the sequence
{

(q!)−1/2Hq(·), q ≥ 0
}

is an orthonormal basis of the
space L2(R, (2π)−1/2e−x

2/2dx) (see [49, Proposition 1.4.1]) and any finite variance
transform of a standard Gaussian random variable X has a representation in terms of
Hermite polynomials (see [49, Example 2.2.6]), that is, for F such that E[F (X)]2 <
∞,

F (X) =
∞∑
q=0

Jq(F )Hq(X)
q! , Jq(F ) := E [F (X)Hq(X)] . (1.3.2)

Several relevant other properties can be deduced from the following formula, valid
for every t, x ∈ R,

exp
(
tx− t2

2

)
=
∞∑
q=0

tq

q!Hq(x);

for instance, the recursive formulas

d

dx
Hq(x) = qHq−1(x), q ≥ 1,

Hq+1(x) = xHq(x)− qHq−1(x), q ≥ 1,

see again [49, Proposition 1.4.1]. Hence, one can easily verify that the few first
Hermite polynomials have the following expression H1(x) = x, H2(x) = x2 − 1,
H3(x) = x3 − 3x and H4(x) = x4 − 6x2 + 3.
The next statement provides a well-known combinatorial description of the moments
and cumulants associated with Hermite transformations of (possibly correlated)
Gaussian random variables. See [57, Chapters 2 - 4] for a self-contained presentation
using integer partitions and Möbius inversion formulae. We refer also to [43] for
definition of cumulants and notation.

Proposition 1.3.4 (Diagram Formulae for Hermite Polynomials, [43]). Let Z =
(Z1, . . . , Zp)T be a centred Gaussian vector, with γij = E[ZiZj ], i, j ∈ {1, . . . , p}.
Let Hl1 , . . . ,Hlp be Hermite polynomials of degrees l1, . . . , lp (≥ 1) respectively. Let
ΓF (l1, . . . , lp) (resp. ΓC

F
(l1, . . . , lp)) be the collection of all diagrams with no flat

edges (resp. connected diagrams with no flat edges) of order l1, . . . , lp. Then,

E

 p∏
j=1

Hlj (Zj)

 =
∑

G∈Γ
F

(l1,...,lp)

p∏
i=1

p∏
j=i+1

γ
ηij(G)
ij , (1.3.3)

Cum[Hl1 , . . . ,Hlp ] =
∑

G∈ΓC
F

(l1,...,lp)

p∏
i=1

p∏
j=i+1

γ
ηij(G)
ij , (1.3.4)
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where, for each diagram G, ηij(G) is the exact number of edges connecting one vertex
of the i-th row to one vertex of the j-th row of the diagram G.

(a) (b) (c)

Figure 1.2. Example of three different diagrams: (a) non-flat and not connected diagram;
(b) non-flat and connected diagram; (c) not connected diagram with two flat edges.

The Diagram Formulae will be often applied in Chapter 3, specifically to compute
fourth moments and cumulants of the examined estimators.

1.3.2 Wiener Chaos and Quantitative Central Limit Theorem

The notion ofWiener Chaos plays a role analogous to that of the Hermite polynomials
{Hq(·), q ≥ 0} for the one-dimensional Gaussian distribution; again, we fully refer
to [49] for more details.
Let H be a real separable Hilbert space, with inner product 〈·, ·〉H.

Definition 1.3.5 (see, e.g., Section 2.1 in [49]). An isonormal Gaussian process over
H is a collection X = {X(f), f ∈ H} of jointly centred Gaussian random variables
defined on some probability space (Ω,F,P), such that E[X(f)X(g)] = 〈f, g〉H for
every f, g ∈ H.

In this section, we shall assume that F is generated by X. Let us now introduce the
Wiener chaoses. For each q ≥ 0, we define Hq be the closure in L2(Ω) of the linear
subspace generated by random variables of the form Hq(X(f)), f ∈ H, ‖f‖H = 1.
The space Hq is the q-th Wiener chaos of X; in particular, H0 = R and H1 = X.
One has the crucial result

L2(Ω) =
∞⊕
q=0
Hq,

see [49, Theorem 2.2.4], which generalizes to an infinite-dimensional setting the case
(1.3.2); this means that every random variable F ∈ L2(Ω) admits a unique expansion
of the type

F =
∞∑
q=0

Jq(F ), (1.3.5)

where Jq : L2(Ω)→ Hq is the orthogonal projection operator; note that J0 = E[F ].
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Now, consider the measure space (A,A, µ), where the set A equipped with the
associated Borel σ-field A is a Polish space2, and the measure µ is positive, σ-finite
and non-atomic; then, take H equal to L2(A,A, µ) with the standard inner product
〈f, g〉H =

´
A f(a)g(a)dµ(a). For every f ∈ H, the isonormal Gaussian process

X(f) =
ˆ
A
f(a)dW (a) (1.3.6)

is defined as the Wiener-Itô integral of f with respect to the Gaussian family
W = {W (B) : B ∈ A, µ(B) <∞} such that, for every B,C ∈ A of finite µ-measure,
E[W (B)W (C)] = µ(B ∩ C), see [49, Example 2.1.4].

Remark 1.3.6. Compare Equation (1.3.6) with the spectral representations in
Example 1.1.8. Both {Xt} and {Zt} are defined with respect to the same random
measure W (·).

Let H⊗q and H�q be the q-th tensor product and the q-th symmetric tensor product of
H, respectively; namely, H⊗q = L2(Aq,Aq, µq) and H�q = L2

s(Aq,Aq, µq), where L2
s

denotes the space of square-integrable and symmetric functions. For x1, x2, . . . , xq ∈
A, f ∈ H, fq ∈ H�, we define

f⊗q(x1, x2, . . . , xq) := f(x1)f(x2) · · · f(xq),

and
Iq(fq) :=

ˆ
Aq
fq(a1, a2, . . . , aq)dW (a1)dW (a2) · · · dW (aq),

where the right-hand side is the multiple Wiener-Itô integral of order q ≥ 1, of fq
with respect to the Gaussian measure W , see also [49, Exercise 2.7.6]. Then, for
f ∈ H such that ‖f‖H = 1, we have

Hq(X(f)) = Iq(f⊗q), q ≥ 1,

see [49, Theorem 2.7.7]. As a consequence, the linear operator Iq provides an isometry
from H�q (equipped with the modified norm 1√

q!‖ · ‖H�q) onto the q-th Wiener chaos
Hq of X (equipped with the L2(Ω) norm). For q = 0, we set I0(c) = c ∈ R and the
relation in (1.3.5) becomes

F =
∞∑
q=0

Iq(fq), (1.3.7)

where f0 = E[F ], and the kernels fq ∈ H�q, q ≥ 1, are uniquely determined (see [49,
Corollary 2.7.8]). In other words, F in (1.3.7) can be seen as a series of (multiple)
stochastic integrals.
For every p, q ≥ 1, every f ∈ H⊗p, every g ∈ H⊗q and every r ∈ {1, . . . , p ∧ q}, the
so-called contraction of f and g of order r is the element f ⊗r g ∈ H⊗p+q−2r defined
as

f ⊗r g(x1, . . . , xp+q−2r) =
2A Polish space is a separable completely metrizable topological space; that is, a space homeo-

morphic to a complete metric space that has a countable dense subset.
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ˆ
Ar
f(a1, . . . , ar, x1, . . . , xp−r)g(a1, . . . , ar, xp−r+1, . . . , xp+q−2r)dµ(a1) . . . dµ(ar).

For p = q = r, we have f ⊗r g = 〈f, g〉H⊗r ; if r = 0, then f ⊗0 g = f ⊗g. Denoting by
f⊗̃rg the canonical symmetrization of f ⊗r g, the following multiplication formula
holds

Ip(f)Iq(g) =
p∧q∑
r=0

r!
(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg)

for f ∈ H�p and g ∈ H�q, see [49, Theorem 2.7.10].
Finally, we report the Fourth Moment Theorem, which allows us to establish
Quantitative Central Limit Theorems.

Theorem 1.3.7 (Fourth Moment Theorem, Theorem 5.2.7 in [49]). Let {Fn, n ≥ 1},
be a sequence of random variables belonging to the q-th chaos of X, for some fixed
integer q ≥ 1. Then, for Z d= N (0, 1),

dW

(
Fn√
V[Fn]

, Z

)
≤
√

2q − 2
3πq

Cum[Fn]
V[Fn]2 .

Remark 1.3.8. This result is systematically stronger than the so-called method of
moments and cumulants, which is the most popular tool used in the proof of central
limit theorems for functional of Gaussian fields. Basically, it requires proving that
all the moments (or cumulants) of Fn converge to those of a standard Gaussian
random variable. The Fourth Moment Theorem is, instead, a "simplified" version
for sequences of chaotic random variables with possibly different orders, since one
has just to study the limit of the fourth moment (or cumulant). More importantly, it
gives as a result, not only the simple convergence in distribution, but also an explicit
bound on the probability metric and hence, in this sense, a Quantitative Central
Limit Theorem for Fn. See, also, Chapter 6 of [49] for a multivariate version.

In several recent works, the FMT has been applied to obtain QCLTs for specific
random functionals. In particular, it was discovered to be a powerful tool to study the
geometry of random fields on the sphere (and in general on Riemannian manifolds).
See, for example, [46, 71, 70, 15, 16] for the sphere, [45] for the torus, and [52, 59]
for the plane.

1.4 Short Background on Operator Theory

This section contains some background notions and notations from operator theory;
we mainly refer to [32].
Let X1 and X2 be Banach spaces, i.e., complete normed linear spaces, with norms
‖ · ‖Xi , i = 1, 2, and T a linear transformation that maps from X1 into X2. We
recall that the linear transformation T is bounded (or continuous) is there exists a
finite constant C > 0 such that

‖T x‖X2 ≤ C‖x‖X1 .
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Then, it is defined the operator norm

‖T ‖op = sup
x∈X1,‖x‖X1=1

‖T x‖X2 , (1.4.1)

and its adjoint operator, that is, the unique element T ∗ satisfying

〈T x1, x2〉X2 = 〈x1,T
∗x2〉X1 ,

for all x1 ∈ X1, x2 ∈ X2; when T ∗ = T , T is called self-adjoint.
Moreover, T is compact if for any bounded sequence {xn} ∈ X1, {T xn} contains
a convergent subsequence in X2. Note that compact linear transformations are
necessarily bounded, hence are referred to as compact operators.
Let us focus on linear and bounded operators T : H→ H, where H is some separable
Hilbert space, with inner product 〈·, ·〉 and associated norm ‖ ·‖. When working with
Hilbert spaces, this type of operators can be thought as the extension of the concept
of matrix (acting on a finite-dimensional vector space) to infinite-dimensional spaces.
Indeed, in this setting, eigenvalues and eigenvectors (or eigenfunctions when H is a
function space) are defined analogously as the scalar λ and nonzero element e of H,
respectively, which satisfies

T e = λe.

Within the class of compact operators on separable Hilbert spaces, there are the
so-called Hilbert-Schmidt and trace class (or nuclear) operators, that arises in our
work ahead and, more in general, are pervasive throughout statistics. Specifically in
functional data analysis, of special interest are integral operators, for which a key
result is the celebrated Mercer’s Theorem (see, for instance, [32, Theorem 4.6.5])
that uses the eigenvalue-eigenvector decomposition on an integral operator to obtain
a corresponding series expansion for the operator’s kernel.
Very briefly, let {ei, i ∈ N} be a complete orthonormal system for H, T is called
Hilbert-Schmidt if

‖T ‖HS :=
( ∞∑
i=1
‖T ei‖2

)1/2

<∞;

trace class if

‖T ‖TR :=
∞∑
i=1
〈(T ∗T )1/2ei, ei〉 <∞,

where T ∗ is the adjoint of T . ‖T ‖HS and ‖T ‖TR are respectively the Hilbert-
Schmidt and trace (or nuclear) norms of T and, by their definitions, it can be
deduced that trace class operators are also Hilbert-Schmidt [32, Theorem 4.5.2].
If we restrict our attention to compact self-adjoint operators, we end up with a
fundamental result of functional analysis, which asserts that every compact self-
adjoint operator may be diagonalized in some suitable basis.

Theorem 1.4.1 (Theorem 6.11 in [11]). Let H be a separable Hilbert space and let
T : H → H be a compact self-adjoint operator. Then there exists a Hilbert basis
composed of eigenvectors of T .
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The proof is given in [11, Section 6.4].
As a consequence, the two norms have a more explicit expression in terms of the
corresponding eigenvalues {λi, i ∈ N}, that is,

‖T ‖HS =
∞∑
i=1
|λi|2 and ‖T ‖TR =

∞∑
i=1
|λi|;

while the operator norm (1.4.1) can be written as

‖T ‖op = max
i∈N
|λi|.
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Chapter 2

Spherical Random Fields with
Temporal Dependence

In this chapter we combine the standard notions of stationary processes and random
fields defined on the sphere, to analyze harmonic properties of time-varying spherical
random fields. As mentioned earlier, harmonic analysis on the sphere has already
been studied extensively and proved to be a valid tool to perform statistical analysis
(see, for instance, [23, 36]). This naturally leads to investigate possible extensions in
a time-dependent framework, due to also the growing necessity to model sequences of
potentially dependent spherical data in many areas, such as Cosmology, Geophysics,
and also Medical Imaging. All the results can be framed within the context of
functional time series analysis.

This chapter is principally divided into two main parts. The first section provides
some results on a double spectral representation, both in (discrete) time and space, of
time-dependent spherical random fields, while the other section focuses on properties
of a specific class of sphere-cross-time random fields which can be also interpreted
as functional autoregressive processes (see [10]) taking values in L2(S2).

2.1 Double Spectral Representation

This section is devoted to the spectral representation of functional time series
which are essentially sequences of spherical random fields. The main purpose is to
study these objects, trying to simultaneously capture the surface structure (spatial
component) as well as the dynamics in time (temporal component); what in [55]
is called within/between curve dynamics. Indeed, we extended the work [55], for
dependent random functions on the interval [0, 1], to the case of the sphere.
We start with very general assumptions, and then we gradually add some structure
to the objects we are treating.

Notation. Only in this section, we will denote with L2(S2;C) := L2(S2, dx ;C)
the Hilbert space of square-integrable complex-valued functions on S2 endowed with
usual the inner product 〈f, g〉L2(S2;C) =

´
S2 f(x)g(x)dx. ‖ · ‖L2(S2;C) will be the norm

induced by 〈·, ·〉L2(S2;C); when it does not cause confusion, we will omit the subscript
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L2(S2;C). Moreover, the restriction of L2(S2;C) to real-valued functions will be
denoted by L2(S2;R).
For a real- or complex-valued function f defined on a set D, we define ‖f‖∞ :=
supx∈D |f(x)|. Recall that ‖T ‖TR is the trace (or nuclear) norm of the operator T ,
see Section 1.4.

2.1.1 A Minimal Set of Assumptions

Let T be a random element of L2(S2;R) defined on a probability space (Ω,F,P),
i.e., a measurable mapping T : Ω → L2(S2;R), and such that E‖T‖2 < ∞. Then,
for each ω ∈ Ω,∥∥∥∥∥∥T (ω)−

L∑
`=0

∑̀
m=−`

a`,m(ω)Y`,m

∥∥∥∥∥∥
2

L2(S2;C)

→ 0, L→∞,

where a`,m := 〈Tt, Y`,m〉. Following a similar argument as Remark 1.2.9, we also
deduce that

E

∥∥∥∥∥∥T −
L∑
`=0

∑̀
m=−`

a`,mY`,m

∥∥∥∥∥∥
2

L2(S2;C)

→ 0, L→∞.

Since E‖T‖2 < ∞, the mean element of T and the covariance operator R :
L2(S2;C)→ L2(S2;C) are both well-defined as Bochner integrals (see [32, Chapter
7]),

m = E [T ] :=
ˆ

Ω
T dP,

R = E [(T −m)⊗ (T −m)] :=
ˆ

Ω
(T −m)⊗ (T −m) dP,

where for u, v ∈ L2(S2;C) the tensor product u ⊗ v is defined to be the mapping
that takes any element f ∈ L2(S2;C) to u〈f, v〉 ∈ L2(S2;C).

Remark 2.1.1. The Bochner integral extends the concept of Lebesgue integration
to integration over a Banach space (see [32] for definition and properties). Given a
function f on a measure space (E,E, µ) that takes on values in a Banach space X
(with norm ‖ · ‖), the Bochner integral of f over E is defined as

ˆ
E
fdµ = lim

n→∞

ˆ
E
fndµ,

where {fn, n ∈ N} is a sequence of simple functions (in the sense of [32, Definition
2.6.1]) such that limn→∞

´
E ‖fn − f‖dµ = 0. Clearly, by triangle inequality,∥∥∥∥ˆ

E
fdµ

∥∥∥∥ ≤ ˆ
E
‖f‖dµ.

In the specific case of random elements, the measure space is (Ω,F,P), whereas the
Banach space is L2(S2;C) with norm ‖ · ‖L2(S2;C).



2.1 Double Spectral Representation 23

Here, we recall two basic properties of m and R:

E〈T, f〉 = 〈m, f〉, (2.1.1)

E
[
〈T −m, g〉〈T −m, f〉

]
= 〈Rf, g〉, (2.1.2)

f, g ∈ L2(S2;C), and 〈Rf, g〉 = 〈f,Rg〉, that is, R is self-adjoint. Without loss of
generality, we shall assume m = 0.
Now consider a sequence {Tt, t ∈ Z} of zero-mean random elements of L2(S2;R)
defined on a probability space (Ω,F,P) and such that, for each t ∈ Z, E‖Tt‖2 <∞;
then we can also define as Bochner integrals the autocovariance operators

Rt,s = E [Tt ⊗ Ts] :=
ˆ

Ω
Tt ⊗ Ts dP, t, s ∈ Z,

which satisfies
E
[
〈Tt, g〉〈Ts, f〉

]
= 〈Rt,sf, g〉, (2.1.3)

f, g ∈ L2(S2;C), and 〈Rt,sf, g〉 = 〈f,Rs,t g〉, that is, the adjoint of Rt,s is Rs,t.

Remark 2.1.2. Properties such as those in Equations (2.1.1), (2.1.2), and (2.1.3)
are proved in [32]. However, the authors restrict their attention to real Hilbert spaces.
Also in [55] the autocovariance operators are defined on the restriction of L2([0, 1])
to real-valued functions. Here, even if we work with random elements of L2(S2;R),
their spectral representation is in terms of the standard complex basis of spherical
harmonics {Y`,m}, hence we shall define the Rt,s’s on L2(S2;C).

It is then natural to extend the definition of a stationary functional time series of
L2(S2;R).

Definition 2.1.3 (see, for instance, Definition 2.4 in [10]). We say that the sequence
{Tt, t ∈ Z} of zero-mean random elements of L2(S2;R) is stationary if E‖Tt‖2 <∞,
for all t ∈ Z, and

Rt,s = Rt+h,s+h, for all t, s, h ∈ Z.

Thus, in this case, as for standard time series, we can simplify the notation as follows:

Rt ≡ Rt,0 = E [Tt ⊗ T0] , t ∈ Z. (2.1.4)

Remark 2.1.4. Note that Definition 2.1.3 can be generalized to sequences of ran-
dom elements of any separable Hilbert space, since the mean element m and the
autocovariance operators Rt,s are, in any case, well-defined (see [32, Chapters 2
and 7]); an example is given in [56, 55] for the Hilbert space of square-integrable
functions on [0, 1]. In even broader terms, [10] provides the definition for sequences
of random elements of separable Banach spaces.

A very first double spectral representation for stationary sequences of spherical
random elements is given by the following theorem:
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Theorem 2.1.5. Let {Tt, t ∈ Z} be a sequence of stationary zero-mean random
elements of L2(S2;R) such that, for every t ∈ Z, E‖Tt‖2 <∞; then it holds

E

∥∥∥∥∥∥Tt −
L∑
`=0

∑̀
m=−`

ˆ π

−π
eiλtdα`,m(λ)Y`,m

∥∥∥∥∥∥
2

L2(S2;C)

→ 0, L→∞,

where {α`,m(λ), −π ≤ λ ≤ π} is a complex-valued orthogonal increment process, that
is,

E(α`,m(λ1)− α`,m(λ2))(α`,m(λ3)− α`,m(λ4)) = 0,
for λ1 > λ2 ≥ λ3 > λ4, and the stochastic integral involved can be understood as a
Riemann-Stieltjes limit, in the sense that

E

∣∣∣∣∣∣〈Tt, Y`,m〉 −
J∑
j=1

eiλjt [α`,m(λj+1)− α`,m(λj)]

∣∣∣∣∣∣
2

→ 0, J →∞,

where −π = λ1 < · · · < λJ+1 = π and maxj=1,...,J |λj+1 − λj | → 0 as J →∞.
Proof. Define a`,m(t) := 〈Tt, Y`,m〉. For every fixed (`,m), {a`,m(t), t ∈ Z} forms a
zero-mean complex-valued stationary sequence, i.e.,

E[a`,m(t)] = 0;
E|a`,m(t)|2 <∞;
E[a`,m(t)a`,m(s)] = C`,m(t− s).

Indeed, from Equation (2.1.1), we have

E[a`,m(t)] = E〈Tt, Y`,m〉 = 〈0, Y`,m〉 = 0.

Moreover,
E|a`,m(t)|2 ≤ E‖Tt‖2 <∞,

and, by Equation (2.1.3),

E[a`,m(t)a`,m(s)] = E
[
〈Tt, Y`,m〉〈Ts, Y`,m〉

]
= 〈Rt−sY`,m, Y`,m〉.

Therefore, as a result of the Spectral Theorem 1.1.7, the following representation
holds

a`,m(t) =
ˆ π

−π
eiλtdα`,m(λ), a.s.,

where {α`,m(λ), −π ≤ λ ≤ π} is an orthogonal increment process, and the stochastic
integral involved can be understood as a Riemann-Stieltjes limit, in the sense that

E

∣∣∣∣∣∣a`,m(t)−
J∑
j=1

eiλjt [α`,m(λj+1)− α`,m(λj)]

∣∣∣∣∣∣
2

→ 0, J →∞,

where −π = λ1 < · · · < λJ+1 = π and maxj=1,...,J |λj+1 − λj | → 0 as J →∞.
As a consequence, for every t ∈ Z,

E

∥∥∥∥∥∥Tt −
L∑
`=0

∑̀
m=−`

ˆ π

−π
eiλtdα`,m(λ)Y`,m

∥∥∥∥∥∥
2

L2(S2;C)

→ 0, L→∞.
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2.1.2 Adding Mean-Square Continuity

Now, consider the collection of random variables
{
T (x, t), (x, t) ∈ S2 × Z

}
defined

on the probability space (Ω,F,P). For every fixed t ∈ Z,
{
T (x, t), x ∈ S2} is a

spherical random field as defined in Section 1.2.1; recall that we are implicitly
assuming measurability with respect to the product σ-field B(S2) × F. We name{
T (x, t), (x, t) ∈ S2 × Z

}
space-time spherical random field. For simplicity, we will

assume that E[T (x, t)] = 0, for all (x, t) ∈ S2 × Z. As usual in the context of
functional data analysis, we model the mapping Tt : ω 7→ T (·, t, ω) as a random
element of the separable Hilbert space of functions L2(S2;R).

Remark 2.1.6. Recall that if
{
T (x), x ∈ S2} is jointly measurable and T (x, ω) ∈

L2(S2;R) for each ω, then the mapping ω 7→ T (·, ω) is a random element of L2(S2;R)
(see [32, Theorem 7.4.1]).

If E‖Tt‖2 <∞, by Fubini’s theorem E|T (x, t)|2 <∞ almost everywhere. Then, the
autocovariance kernel rt,s(·, ·) : (x, y) 7→ E [T (x, t)T (y, s)] is in L2(S2 × S2), and the
corresponding operator Rt,s : L2(S2;C)→ L2(S2;C) induced by right integration

(Rt,sf)(·) :=
ˆ
S2
rt,s(·, y)f(y)dy

coincides with the autocovariance operator Rt,s in (2.1.3), see also [56]. We shall
use the notation Rt,s for both. For a stationary sequence, clearly we can define
rt(·, ·) ≡ rt,0(·, ·) associated with (2.1.4).
The following conditions are the equivalent on the sphere of Conditions 1.1 in [55].
We shall use these conditions to prove first a Functional Cramér Representation
Theorem which involves a L2(S2;C)-valued orthogonal increment process, and then
to obtain a double spectral representation with respect to both space and time. We
stress that here, as in [55], it is not assumed any other prior structural properties
for the stationary sequence (e.g., linearity or Gaussianity).

Condition 2.1.7 (see also Conditions 1.1 in [55]). The zero-mean space-time spher-
ical random field

{
T (x, t), (x, t) ∈ S2 × Z

}
is such that, for every t ∈ Z,

(i) the mapping Tt : ω 7→ T (·, t, ω) is a random element of L2(S2;R) and the
sequence {Tt, t ∈ Z} is stationary;

(ii) the autocovariance kernel rt(·, ·) : (x, y) 7→ E [T (x, t)T (y, 0)] is continuous on
S2 × S2.

Furthermore, we assume that the autocovariance kernels and the associated autoco-
variance operators satisfies respectively:∑

t∈Z
‖rt‖∞ <∞,

∑
t∈Z
‖Rt‖TR <∞. (2.1.5)

Remark 2.1.8. The compactness of S2 has the consequence that rt(·, ·) is also uni-
formly continuous. This continuity is translated to the image of Rt, that is, for each
h ∈ L2(S2;C), (Rth)(·) is uniformly continuous [32, Lemma 4.6.1]. Moreover, notice
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that if r0(·, ·) is continuous on S2 × S2, then each random field
{
T (x, t), x ∈ S2},

t ∈ Z, is mean-square continuous, that is,

lim
x→x0

E[T (x, t)− T (x0, t)]2 = 0, ∀x0 ∈ S2. (2.1.6)

Indeed, as

E[T (x, t)− T (x0, t)]2 = r0(x, x) + r0(x0, x0)− 2r0(x, x0),

the continuity of r0(·, ·) implies (2.1.6).

In [56] there is an extensive discussion on the role of Condition 2.1.7, and at what
cost it may be weakened. However, in this context, it is possible to define the spectral
density kernel at frequency λ ∈ R,

fλ(·, ·) = 1
2π
∑
t∈Z

e−iλtrt(·, ·),

where the convergence is in ‖ · ‖L2(S2×S2) and ‖ · ‖∞. It is uniformly bounded and
also uniformly continuous in λ with respect to ‖ · ‖L2(S2×S2) and ‖ · ‖∞. For each λ,
fλ(·, ·) is continuous on S2 × S2 and

f−λ(x, y) = fλ(x, y) = fλ(y, x).

Moreover, for all t ∈ Z, x, y ∈ S2, the following inversion formula holds
ˆ π

−π
fλ(x, y)eiλtdλ = rt(x, y). (2.1.7)

The spectral density operator Fλ : L2(S2;C)→ L2(S2;C), the operator induced by
the spectral density kernel through right-integration, is self-adjoint and nonnegative
definite for all λ ∈ R. Fλ is also 2π-periodic with respect to λ, trace class, since
‖Fλ‖TR ≤

∑
t∈Z ‖Rt‖TR <∞, λ 7→ ‖Fλ‖TR is uniformly continuous and

‖Fλ‖TR =
ˆ
S2
fλ(x, x)dx.

The reader is referred to [56] for proofs of these assertions.

Remark 2.1.9. The assumptions in Equation (2.1.5) are strictly related to the
concept of short-range dependent stationary processes; indeed, stationary processes
which exhibit short-range dependence are those with absolutely summable covariance
and, hence, bounded and continuous spectral density, e.g., stationary ARMA processes.
For functional time series, this translates into an "absolutely summable" covariance
operator and a "bounded and continuous" spectral density operator, that is, their
nuclear norms are, respectively, absolutely summable, and bounded and continuous.

The following theorem is the analogue of Theorem 2.1 in [55].
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Theorem 2.1.10. (Spherical Functional Cramér Representation, see also [55])
Under Condition 2.1.7, Tt admits the representation

Tt =
ˆ π

−π
eitλdZλ, a.s. in L2(S2), (2.1.8)

where, for fixed λ, Zλ is a random element of L2(S2;C) with E‖Zλ‖2 =
´ λ
−π ‖Fν‖TRdν,

and the process {Zλ,−π ≤ λ ≤ π} has orthogonal increments:

E 〈Zλ1 − Zλ2 , Zλ3 − Zλ4〉 = 0, λ1 > λ2 ≥ λ3 > λ4. (2.1.9)

The representation (2.1.8) is called the Cramér representation of Tt, and the stochastic
integral involved can be understood as a Riemann-Stieltjes limit, in the sense that

E

∥∥∥∥∥∥Tt −
J∑
j=1

eiλjt(Zλj+1 − Zλj )

∥∥∥∥∥∥
2

L2(S2;C)

→ 0, J →∞,

where −π = λ1 < · · · < λJ+1 = π and maxj=1,...,J |λj+1 − λj | → 0 as J →∞.

Proof. The proof follows the same lines of [55]. Let H be the Hilbert space of
L2(S2;C)-valued random elements with finite second moment1 and M0 be the
complex linear space spanned by all finite linear combinations of the Tt’s,

M0 :=


n∑
j=1

bjTj : n ∈ N, bj ∈ C, tj ∈ Z

 ⊂ H.

Let et : ν 7→ eitν , which belongs to the (complex) Hilbert space L2([−π, π], ‖Fν‖TRdν)
endowed with the standard inner product

ˆ π

−π
f(ν)g(ν)‖Fν‖TRdν, f, g ∈ L2([−π, π], ‖Fν‖TRdν),

‖Fν‖TR being the nuclear norm of the spectral density operator. Now, define the
linear operator E by linear extension of the mapping Tt 7→ et. E is well defined and
a linear isometry; in particular, the inversion formula (2.1.7) gives

〈Tt, Ts〉H = E
[ˆ

S2
T (x, t)T (x, s)dx

]
=
ˆ π

−π
ei(t−s)λ‖Fν‖TRdν.

Then, we extend its domain to M, the closure of M0 in H (see [55] for further details);
the extension has a well-defined inverse E−1 : L2([−π, π], ‖Fν‖TRdν) → M. For
any ω ∈ (−π, π], we define Zω = E−1(1[−π,ω)) ∈M and Z−π ≡ 0. By the isometry
property,

〈Zω, Zβ〉H = 〈E−1
1[−π,ω), E

−1
1[−π,β)〉H =

ˆ min{ω,β}

−π
‖Fν‖TRdν. (2.1.10)

1f ∈ H is such that E‖f‖2
H <∞. The associated inner product is defined as

〈f, g〉H = E〈f, g〉L2(S2;C), for f, g ∈ H

.
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Hence, ω 7→ Zω is an orthogonal increment process.
The proof follows with definition of an operator ζ as extension of the mapping

n∑
j=1

gj1[ωj ,ωj+1) 7→
n∑
j=1

gj(Zωj+1 − Zωj ).

The operator ζ is, by (2.1.10), an isomorphism with domain L2([−π, π], ‖Fν‖TRdν),
and in addition ζ = E−1. This in turn implies Tt = E−1(et) = ζ(et). If g is cadlag
with a finite number of jumps, then ζ(g) is in fact the Riemann–Stieltjes integral (in
the mean square sense) with respect to the orthogonal increment process Zω:

ζ(g) =
ˆ π

−π
g(λ)dZλ.

In conclusion, Tt =
´ π
−π e

itλdZλ, as claimed.

Now, define the operator

Y`,m ⊗ Y`,m : L2(S2;C)→ L2(S2;C)
: f 7→ 〈f, Y`,m〉Y`,m.

We are going to establish a double spectral representation result, by showing the
relation between the orthogonal increment process {α`,m(λ),−π ≤ λ ≤ π} (see The-
orem 2.1.5) and {Zλ,−π ≤ λ ≤ π}. It is worth to notice that, under Condition
(2.1.7), all the results presented in [55] can be easily extended to our framework,
including the so-called Cramér–Karhunen–Loève Representation. Such a representa-
tion decomposes the space-time spherical random field into uncorrelated functional
frequency components, exploiting an orthonormal basis for L2(S2;C) made up of
eigenfunctions of the spectral density operator Fλ. However, in the anisotropic case,
these eigenfunctions are unknown and have to be estimated.
The next result does not go through the eigenvalue-eigenfunction decomposition of
Fλ, but is is based on the standard orthonormal basis of spherical harmonics.

Theorem 2.1.11 (Double Spectral Representation). Under Condition 2.1.7, for
every t ∈ Z, it holds that

E

∥∥∥∥∥∥Tt −
ˆ π

−π
eitλ

L∑
`=0

∑̀
m=−`

Y`,m ⊗ Y`,mdZλ

∥∥∥∥∥∥
2

L2(S2;C)

→ 0, L→∞, (2.1.11)

with {Zλ,−π ≤ λ ≤ π} as defined in Theorem 2.1.10.

Remark 2.1.12. Equation (2.1.11) cannot be interpreted as a proper Cramér–
Karhunen–Loève decomposition, since the random components at different multipoles
are correlated. It result not to be useful when making inference, but here it is still
reported for completeness.

Proof. Recall from Theorem 2.1.5 that

E

∥∥∥∥∥∥Tt −
L∑
`=0

∑̀
m=−`

ˆ π

−π
eiλtdα`,m(λ)Y`,m

∥∥∥∥∥∥
2

L2(S2;C)

→ 0, L→∞.
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First we prove that α`,m(λ) a.s.= 〈Zλ, Y`,m〉.
For a fixed λ, α`,m(λ) ∈ span {a`,m(t), t ∈ Z} = span {〈Tt, Y`,m〉, t ∈ Z} ⊂ L2(Ω).
Indeed, from [12], we know that there exist a sequence {αj}j∈Z ⊂ C such that

E

∣∣∣∣∣∣α`,m(λ)−
∑
|j|≤k

αj〈Ttj , Y`,m〉

∣∣∣∣∣∣
2

→ 0, k →∞.

The sequence is given by

αj = 1
2π

ˆ π

−π
1[−π,λ)(ν)e−ijνdν, j ∈ Z. (2.1.12)

Now,

E

∣∣∣∣∣∣〈Zλ, Y`,m〉 −
∑
|j|≤k

αj〈Ttj , Y`,m〉

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣
〈
Zλ −

∑
|j|≤k

αjTtj , Y`,m

〉∣∣∣∣∣∣
2

≤ E

∥∥∥∥∥∥Zλ −
∑
|j|≤k

αjTtj

∥∥∥∥∥∥
2

L2(S2;C)

,

by Cauchy-Schwartz inequality e orthonormality of the Y`,m’s.
We just need to prove that

E

∥∥∥∥∥∥Zλ −
∑
|j|≤k

αjTtj

∥∥∥∥∥∥
2

L2(S2;C)

→ 0, k →∞.

Recall that {αj , j ∈ Z} as defined in (2.1.12) represent the Fourier coefficients of
the indicator function 1[−π,λ)(·). Then, its k-th order Fourier series approximation
is given by

hk(·) =
∑
|j|≤k

aje
ik·,

and
∑
|j|≤k αjTtj = E−1(hk), where E is the isomorphism of Theorem 2.1.8. Since

‖Fλ‖TR ≤ const uniformly over λ by assumption, it holds that
ˆ π

−π
|hk(ν)− 1[−π,λ)(ν)|2‖Fν‖TRdν → 0, k →∞.

By continuity of E, we conclude that

E−1(hk)→ E−1(1[−π,λ)) = Zλ, k →∞,

in the L2-sense. Finally, the triangular inequality gives the result.
As a consequence, we have thatˆ π

−π
eitλY`,m ⊗ Y`,mdZλ =

ˆ π

−π
eitλdα`,m(λ)Y`,m, a.s. in L2,

see [55] for a definition of stochastic integrals of operators as the one on the left-hand
side. By linearity of the stochastic integral in (2.1.11) (see [55]), we conclude the
proof.
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Remark 2.1.13. By orthonormality of the Y`,m’s, the approximation error is given
by

E

∥∥∥∥∥∥Tt −
ˆ π

−π
eitλ

L∑
`=0

∑̀
m=−`

Y`,m ⊗ Y`,mdZλ

∥∥∥∥∥∥
2

L2(S2;C)

=
∑
`>L

∑̀
m=−`

C`,m(0),

see also [55, Remark 3.10].

2.1.3 Adding Isotropy

Now, we strengthen our conditions, introducing joint isotropy-stationarity (see also
[20]). To this purpose, we give the following definition, that will be crucial for the
rest of the thesis.

Definition 2.1.14. The space-time spherical random field
{
T (x, t), (x, t) ∈ S2 × Z

}
is said to be isotropic stationary if
(i) E|T (x, t)|2 <∞, for all (x, t) ∈ S2 × Z,

(ii) E[T (x, t)] = const, for all (x, t) ∈ S2 × Z,

(iii) the covariance function Γ on (S2 × Z)2 is such that

Γ(x, t, y, s) = Γ(gx, t+ h, gy, s+ h),

for all x, y ∈ S2, g ∈ SO(3), t, s, h ∈ Z.
Then, the new assumptions become:

Condition 2.1.15. The zero-mean space-time spherical random field {T (x, t),
(x, t) ∈ S2×Z} is isotropic stationary with autocovariance kernels rt(·, ·) ≡ Γ(·, t, ·, 0),
t ∈ Z.
Furthermore, we assume that the autocovariance kernels and the associated autoco-
variance operators satisfies respectively:∑

t∈Z
‖rt‖∞ <∞,

∑
t∈Z
‖Rt‖TR <∞. (2.1.13)

Remark 2.1.16. In this setup, most of the conditions given in [55] are satisfied.
The first part of Condition 2.1.15 implies that there exists Tt random element
of L2(S2;R) such that T (·, t) = Tt P-a.s., and clearly E‖Tt‖2 < ∞. Moreover,
continuity of all kernels rt(·, ·), t ∈ Z, follows from mean-square continuity of{
T (x, t), x ∈ S2} , t ∈ Z, (which is in turn consequence of isotropy, see [43]). Write

rt(x, y)− rt(x0, y0) = (rt(x, y)− rt(x0, y)) + (rt(x0, y)− rt(x0, y0)).

The Cauchy-Schwartz inequality then gives

|rt(x, y)− rt(x0, y)| ≤
(
E[T (y, 0)]2

)1/2 (
E[T (x, t)− T (x0, t)]2

)1/2

and

|rt(x0, y)− rt(x0, y0)| ≤
(
E[T (x0, t)]2

)1/2 (
E[T (y, 0)− T (y0, 0)]2

)1/2
,

so that continuity of rt(·, ·) follows immediately from (2.1.6). Hence, all the previous
results can be directly applied to Tt.
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These stronger conditions allows to apply directly theorems from [55], since we have
an explicit eigenvalue-eigenfunction decomposition of the spectral density operator in
terms of spherical harmonics. Exploiting joint isotropy-stationarity of the space-time
spherical random field, we can obtain a neat expression for some quantities of interest,
such as the autocovariance and the spectral density kernels.
First of all, the sequence of zero-mean random coefficients satisfies

E[a`,m(t)a`′,m′(s)] = C`(t− s)δ`
′
` δ

m′
m , t, s ∈ Z;

and the covariance kernel is shown to have a spectral decomposition in terms of
Legendre polynomials, i.e.,

rt(x, y) =
∞∑
`=0

2`+ 1
4π C`(t)P`(〈x, y〉), (2.1.14)

for all x, y ∈ S2, t ∈ Z.

Remark 2.1.17. Following the works [64] and [26], in [8] the authors give a
mathematical characterization of covariance functions for isotropic stationary random
fields over S2 × R. In [20] the regularity properties of such covariance functions
have been investigated for the case where a double Karhunen–Loève expansion holds.
Examples of random fields satisfying this decomposition are found in the Appendix
of [62].

As a consequence of (2.1.14), the orthonormal basis {Y`,m, ` ≥ 0, m = −`, . . . , `}
satisfies

(FλY`,m)(·) =
ˆ
S2
fλ(·, y)Y`,m(y)dy

= 1
2π
∑
t∈Z

e−itλ
ˆ
S2
rt(·, y)Y`,m(y)dy

=

 1
2π
∑
t∈Z

e−itλC`(t)

Y`,m(·).

Hence, f`(λ) = 1
2π
∑
t∈Z e

−itλC`(t) is the eigenvalue associated with the eigenvector
Y`,m and corresponds to the spectral density of the time series {a`,m(t), t ∈ Z}, for
m = −`, . . . , `. This implies

fλ(x, y) =
∞∑
`=0

2`+ 1
4π f`(λ)P`(〈x, y〉),

‖Fλ‖TR =
∞∑
`=0

(2`+ 1)f`(λ),

for all x, y ∈ S2, −π ≤ λ ≤ π.
Finally, in the isotropic case, it is also possible to show that the Cramér–Karhunen–
Loève Representation, with respect to the orthogonal increment process {Zλ,−π ≤ λ ≤ π},
holds in the L2(Ω) sense for almost every x ∈ S2.
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Theorem 2.1.18 (Spherical Cramér–Karhunen–Loève Representation). Under Con-
dition 2.1.15, for every t ∈ Z and almost every x ∈ S2,

E

∣∣∣∣∣∣
ˆ π

−π
eitλdZλ(x)−

L∑
`=0

∑̀
m=−`

ˆ π

−π
eitλdα`,m(λ)Y`,m(x)

∣∣∣∣∣∣
2

→ 0, L→∞,

with {Zλ,−π ≤ λ ≤ π} as defined in Theorem 2.1.10.

Proof. Under isotropy, it holds that

E

∣∣∣∣∣∣
ˆ π

−π
eitλdWλ(x)−

L∑
`=0

∑̀
m=−`

ˆ π

−π
eitλdα`,m(λ)Y`,m(x)

∣∣∣∣∣∣
2

→ 0, L→∞,

for every x ∈ S2, where {Wλ(x), −π ≤ λ ≤ π} is such that

E

∣∣∣∣∣∣Wλ(x)−
∑
|j|≤k

αjTtj (x)

∣∣∣∣∣∣
2

→ 0, k →∞,

for every x ∈ S2. We want to prove that, for every λ ∈ [−π, π], Wλ = Zλ almost
surely, almost everywhere.
First note that, thanks to the standard isomorphism,

E

∣∣∣∣∣∣Wλ(x)−
∑
|j|≤k

αjTtj (x)

∣∣∣∣∣∣
2

=
ˆ π

−π

∣∣∣∣∣∣1[−π,λ)(ν)−
∑
|j|≤k

αje
itjν

∣∣∣∣∣∣
2

fλ(x, x)dν,

and,

ˆ
S2

ˆ π

−π

∣∣∣∣∣∣1[−π,λ)(ν)−
∑
|j|≤k

αje
itjν

∣∣∣∣∣∣
2

fλ(x, x)dν

 dx
=
ˆ π

−π

∣∣∣∣∣∣1[−π,λ)(ν)−
∑
|j|≤k

αje
itjν

∣∣∣∣∣∣
2

‖Fν‖TRdν <∞.

Then, by the Dominated Convergence Theorem,

lim
k→∞

E

∥∥∥∥∥∥Wλ −
∑
|j|≤k

αjTtj

∥∥∥∥∥∥
2

L2(S2;C)

=
ˆ
S2

lim
k→∞

E

∣∣∣∣∣∣Wλ(x)−
∑
|j|≤k

αjTtj (x)

∣∣∣∣∣∣ dx = 0.

2.2 Spherical Functional Autoregressions
In this section, we introduce a particular class of space-time spherical random fields,
i.e., what we call spherical functional autoregressions. The main purpose here is
to study the existence and uniqueness of an isotropic stationary solution of the
functional autoregressive equation, see also [10, Chapter 5].
As usual in the context of autoregressive processes, we start with the definition of a
spherical white noise.
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Definition 2.2.1 (Spherical White Noise). The collection of random variables
{Z(x, t), (x, t) ∈ S2 × Z} is said to be a spherical white noise if:

(i) for every fixed t ∈ Z,
{
Z(x, t), x ∈ S2} is a zero-mean isotropic random field,

with covariance function

ΓZ(x, y) =
∞∑
`=0

2`+ 1
4π C`;ZP`(〈x, y〉),

∞∑
`=0

2`+ 1
4π C`;Z <∞,

{C`;Z} denoting as usual the angular power spectrum of Z(·, t);

(ii) for every t 6= s, the random fields
{
Z(x, t), x ∈ S2} and

{
Z(x, s), x ∈ S2} are

independent.

Remark 2.2.2. Note that we are writing the spherical white noise as a collection
of random variables defined on every pair (x, t) ∈ S2 × Z. Alternatively, following
[10, page 72], one could give the definition in terms of random elements of a
separable Hilbert space (in our case, corresponding to L2(S2)). The two approaches
are equivalent here, because throughout this section and the next chapters we will
always be dealing with jointly-measurable mean-square continuous random fields.

Definition 2.2.3. A spherical isotropic kernel operator is an application Φ :
L2(S2)→ L2(S2) which satisfies

(Φf)(x) =
ˆ
S2
k(〈x, y〉)f(y)dy, x ∈ S2,

for some continuous k : [−1, 1]→ R.

The following representation holds in the L2-sense for the kernel associated with Φ:

k(〈x, y〉) =
∞∑
`=0

φ`
2`+ 1

4π P`(〈x, y〉). (2.2.1)

The coefficients {φ`, ` ≥ 0} corresponds to the eigenvalues of the operator Φ and
the associated eigenfunctions are the family of spherical harmonics {Y`,m}, yielding

ΦY`,m = φ`Y`,m,

Thus, it holds
∑
`(2`+ 1)φ2

` <∞, and hence this operator is Hilbert-Schmidt (see,
e.g., [32]). In the next chapters, we shall also consider trace class operators, namely,
such that

∑
`(2`+ 1)|φ`| <∞, for which the representation (2.2.1) holds pointwise

for every x, y ∈ S2.
Now, we focus on a space-time spherical random field

{
T (x, t), (x, t) ∈ S2 × Z

}
, as

defined in Section 2.1.2, for which it holds almost surely T (·, t) ∈ L2(S2;R), t ∈ Z.

Definition 2.2.4.
{
T (x, t), (x, t) ∈ S2 × Z

}
is called Spherical Autoregressive Pro-

cess of order p (written SPHAR(p)) if there exist p isotropic kernel operators
{Φ1, . . . ,Φp} and a spherical white noise

{
Z(x, t), (x, t) ∈ S2 × Z

}
such that

T (x, t)− (Φ1T (·, t− 1))(x)− · · · − (ΦpT (·, t− p))(x)− Z(x, t) = 0, (2.2.2)

for all (x, t) ∈ S2 × Z, the equality holding both in the L2(Ω) and in the L2(S2 × Ω)
sense.
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Remark 2.2.5. It should be noted that the solution process is defined pointwise,
i.e., for each (x, t) there exists a random variable defined on (Ω,=,P) such that the
identity (2.2.2) holds.

Let us define the eigenvalues {φ`;j , ` ≥ 0, j = 1, . . . , p}, which satisfy

ΦjY`,m = φ`;jY`,m, and kj(〈x, y〉) =
∞∑
`=0

φ`;j
2`+ 1

4π P`(〈x, y〉).

Hence, for any t ∈ Z,

ΦjT (·, t− j) =
∞∑
`=0

∑̀
m=−`

φ`;ja`,m(t− j)Y`,m, a.s. in L2(S2),

that is, ΦjT (·, t− j) admits a spectral representation in terms of spherical harmonics
with coefficients {φ`;ja`m(t− j), ` ≥ 0, m = −`, . . . , `}. Likewise, we obtain

a`,m(t) = φ`;1a`,m(t− 1) + · · ·+ φ`;pa`,m(t− p) + a`,m;Z(t); (2.2.3)

to ensure identifiability, we assume that there exists at least an ` such that φ`;p 6= 0,
so that Pr{ΦpT (·, t) 6= 0} > 0, t ∈ Z, see again [10].
Now, define the polynomials φ` : C→ C, ` ≥ 0, such that

φ`(z) = 1− φ`;1z − · · · − φ`;pzp, (2.2.4)

see Section 1.1.

Condition 2.2.6. The sequence of polynomials (2.2.4) is such that

|z| ≤ 1 ⇒ φ`(z) 6= 0.

More explicitly, there are no roots in the unit disk, for all ` ≥ 0.

Remark 2.2.7. This condition, together with the summability of
{
φ2
`;j

}
, ensures

that the smallest root taken among all non-degenerate polynomials is bounded away
from one. Indeed, if ξ`;1, . . . , ξ`;r` are the distinct roots of the d`-degree polynomial
(2.2.4), 1 ≤ d` ≤ p, then

|ξ`;j | ≥ ξ∗ > 1,

uniformly over `. Equivalently, there exists δ > 0 such that

|z| < 1 + δ ⇒ φ`(z) 6= 0, for all ` ≥ 0.

Example 2.2.8 (SPHAR(1)). The family of random variables {T (x, t), (x, t) ∈
S2×Z} is a spherical autoregressive process of order one if for all pairs (x, t) ∈ S2×Z
it satisfies

T (x, t) = (Φ1T (·, t− 1))(x) + Z(x, t); (2.2.5)

in this case, Condition 2.2.6 simply becomes |φ`| < 1 or |φ`| ≤ 1
1+δ , for all ` ≥ 0.
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For all integer ` ≥ 0, it is standard to show that there exist real-valued sequences
{ψj;`, j ≥ 0} such that

ψj;` = 1 j = 0,
ψj;` −

∑
0<k≤j φ`;jψj−k;` = 0 1 < j < p,

ψj;` −
∑

0<k≤p φ`;jψj−k;` = 0 j ≥ p.
(2.2.6)

Excluding the degenerate cases, the sequences can be written explicitly as

ψj;` =
r∑̀
u=1

s`;u∑
v=1

cu,v;`j
vξ−j`;u,

where
{
ξ−j`;u : u = 1, . . . , r`

}
denotes the distinct roots of φ`(z), each of them of

multiplicity s`;u, so that
∑r`
u=1 s`;u = d` ≤ p, for all `; the constants {cu,v;`} are

determined by the initial conditions (2.2.6), see [12, Section 3.3].
The proof of the following statement is given already in [10] for the simplest case
of order one processes, but here we construct explicitly the solution with a slightly
different argument for completeness.

Theorem 2.2.9. Under Condition 2.2.6, the unique isotropic stationary solution to
(2.2.2) is given by

T (x, t) = lim
k→∞

Tk(x, t), Tk(x, t) =
Lk∑
`=0

∑̀
m=−`

k∑
j=0

ψj;`a`m;Z(t− j)Y`m(x), (2.2.7)

in the L2(Ω) and L2(S2 × Ω) sense. The coefficients {ψj;`} are determined by the
relation

ψ`(z) =
∞∑
j=0

ψj;`z
j = 1/φ`(z), |z| ≤ 1, (2.2.8)

see also Equation (1.1.5).

Remark 2.2.10. Notice that the isotropic stationary solutions of the SPHAR(1)
equation (2.2.5) take the form

T (·, t) =
∞∑
j=0

Φj
1Z(·, t),

and Condition 2.2.6 is satisfied if and only if the operator norm

‖Φ1‖op := max
`≥0
|φ`| < 1,

see also [10, Section 3.4].

The proof is composed of two steps. First we show that the T (x, t) = limk→∞ Tk(x, t)
is a solution of the SPHAR(p) equation (2.2.2); and then we prove that any isotropic
stationary solution of (2.2.2) takes the form (2.2.7).
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Proof. First note that, under Condition 2.2.6, for any ` ≥ 0, 1/φ`(z) has a power
series expansion, that is,

1/φ`(z) =
∞∑
j=0

ψj;`z
j = ψ`(z), |z| ≤ 1,

and
∞∑
j=0
|ψj;`| <∞,

see [12, Proof of Theorem 3.1.1, page 85].
Now, let us show first that the sequence {Tk} is Cauchy. Indeed we have, for
k′ > k,Lk′ > Lk,

Tk′(x, t)− Tk(x, t) =
Lk∑
`=0

∑̀
m=−`

k′∑
j=k

ψj;`a`,m;Z(t− j)Y`,m(x)

+
Lk′∑

`=Lk+1

∑̀
m=−`

k′∑
j=0

ψj;`a`,m;Z(t− j)Y`,m(x)

and, therefore,

E |Tk′(x, t)− Tk(x, t)|2

=
Lk∑
`=0

2`+ 1
4π C`;Z

k′∑
j=k
|ψj;`|2 +

Lk′∑
`=Lk+1

2`+ 1
4π C`;Z

k′∑
j=0
|ψj;`|2

≤
∞∑
`=0

2`+ 1
4π C`;Z

∞∑
j=k
|ψj;`|2 +

∞∑
`=Lk+1

2`+ 1
4π C`;Z

∞∑
j=0
|ψj;`|2. (2.2.9)

For ` ≥ 0, consider the stationary process

X`(t) =
∞∑
j=0

ψj;`ε(t− j), t ∈ Z;

here we take {ε(t), t ∈ Z} to be a white noise sequence with variance identically
equal to one. The spectral density of {X`(t), t ∈ Z} is given by (see [12])

f`(λ) = 1
2π

∣∣∣∣∣∣
∞∑
j=0

ψj;` exp(iλj)

∣∣∣∣∣∣
2

= 1
2π |ψ`(e

iλ)|2 = 1
2π

1
|φ`(eiλ)|2

,

ψ`(eiλ) :=
∞∑
j=0

ψj;` exp(iλj), φ`(eiλ) = 1− φ`;1eiλ − · · · − φ`;peipλ.

Now, recall the identity

V[X`(t)] =
∞∑
j=0
|ψj;`|2 =

ˆ π

−π
f`(λ)dλ,
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whence ∞∑
j=0
|ψj;`|2 = 1

2π

ˆ π

−π
|ψ`(eiλ)|2 dλ = 1

2π

ˆ π

−π

1
|φ`(eiλ)|2dλ.

Moreover, under Condition 2.2.6, for the non-degenerate polynomials it holds that

|φ`(eiλ)| =
r∏̀
u=1
|1− ξ−1

`;ue
iλ|s`;u ≥

r∏̀
u=1

(1− |ξ−1
`;u |)

s`;u ≥ (1− ξ−1
∗ )p > 0 ,

see Remark 2.2.7; hence, as a consequence,
∞∑
j=0
|ψj;`|2 = 1

2π

ˆ π

−π

1
|φ`(eiλ)|2dλ ≤

(
ξ∗

ξ∗ − 1

)2p
< const,

uniformly over `, and
∞∑
`=0

∞∑
j=0
|ψj;`|2

2`+ 1
4π C`;Z < const <∞.

Then, by the Dominated Convergence Theorem, we have

lim
k→∞

∞∑
`=0

∞∑
j=k
|ψj;`|2

2`+ 1
4π C`;Z =

∞∑
`=0

 lim
k→∞

∞∑
j=k
|ψj;`|2

 2`+ 1
4π C`;Z = 0,

and (2.2.9) → 0 as k → ∞, so that {Tk} is indeed a Cauchy sequence. The proof
that it satisfies (2.2.2) is standard; we have that∥∥∥∥∥∥T (x, t)−

p∑
j=1

(ΦjT (·, t− j))(x)

∥∥∥∥∥∥
L2(Ω)

= lim
k→∞

∥∥∥∥∥∥Tk(x, t)−
p∑
j=1

(ΦjTk(·, t− j))(x)− Z(x, t)

∥∥∥∥∥∥
L2(Ω)

= lim
k→∞

∥∥∥∥∥∥
p∑
j=1

Lk∑
`=1

∑̀
m=−`

k∑
h=k−j+1

φ`;jψh;`a`,m;Z(t− j − h)Y`,m(x)

∥∥∥∥∥∥
L2(Ω)

≤
p∑
j=1

lim
k→∞

∥∥∥∥∥∥
Lk∑
`=1

∑̀
m=−`

k∑
h=k−j+1

φ`;jψh;`a`,m;Z(t− j − h)Y`,m(x)

∥∥∥∥∥∥
L2(Ω)

,

which again is easily shown to be zero by limk→∞
∑∞
h=k−j+1 |ψh;`|2 = 0 and Dom-

inated Convergence Theorem. The argument involving the L2(S2 × Ω) limit is
analogous.

To complete the proof, we need to show that if
{
U(x, t), (x, t) ∈ S2 × Z

}
is an

isotropic stationary solution of (2.2.2), then we must have

U(x, t) =
∞∑
`=0

∑̀
m=−`

∞∑
j=0

ψj;`a`,m;Z(t− j)Y`,m(x)
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in L2(Ω × S2) and L2(Ω). If
{
U(x, t), (x, t) ∈ S2 × Z

}
is an isotropic stationary

solution of (2.2.2), then a`,m;U (t) =
´
S2 U(x, t)Y`,m(x)dx is a stationary solution of

the standard AR(p) equation and, under Condition 2.2.6,

a`,m;U (t) =
∞∑
j=0

ψj;`a`,m;Z(t− j), in L2(Ω).

Then, by stationarity, E|a`,m;U (t)|2 = C`;U and∥∥∥∥∥∥
Lk∑
`=0

∑̀
m=−`

a`,m;U (t)Y`,m −
Lk∑
`=0

∑̀
m=−`

k∑
j=0

ψj;`a`,m;Z(t− j)Y`,m

∥∥∥∥∥∥
L2(Ω×S2)

=
Lk∑
`=0

∞∑
j=k+1

|ψj;`|2(2`+ 1)C`;U ,

which goes to zero as k →∞. Hence, by triangular inequality,∥∥∥∥∥∥U(·, t)−
Lk∑
`=0

∑̀
m=−`

k∑
j=0

ψj;`a`,m;Z(t− j)Y`,m

∥∥∥∥∥∥
L2(Ω×S2)

→ 0, k →∞.

The same result holds in the sense of convergence in L2(Ω), for every fixed pair (x, t).
Indeed, we have

E

∣∣∣∣∣∣
Lk∑
`=0

∑̀
m=−`

a`,m;U (t)Y`,m(x)−
Lk∑
`=0

∑̀
m=−`

k∑
j=0

ψj;`a`,m;Z(t− j)Y`,m(x)

∣∣∣∣∣∣
2

=
Lk∑
`=0

∞∑
j=k+1

|ψj;`|2
2`+ 1

4π C`;U .

In the chapters to follow, we are going to introduce two estimation procedures for
the spherical autoregressive kernels {kj : j = 1, . . . , p} and investigate asymptotic
properties of the corresponding nonparametric estimators. Specifically, in Chapter 3,
we focus on the solutions of a functional L2-minimization problem, while, in Chapter
4, we add a convex penalty term to study LASSO-type estimators under sparsity
assumptions.
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Chapter 3

Asymptotics for Spherical
Functional Autoregressions1

3.1 Introduction

Our purpose in this chapter is to investigate a class of space-time processes, which
can be viewed as functional autoregressions taking values in L2(S2); we refer to [10]
for a general textbook analysis of functional autoregressions taking values in Hilbert
spaces, and [3, 31, 56, 55] for a very partial list of some important recent references.
Dealing with functional spherical autoregressions ensures some very convenient
simplifications; in particular, we exploit the analytic properties of the standard
orthonormal basis of L2(S2) and some natural isotropy requirements to obtain neat
expressions for the autoregressive operators, which are then estimated by a form of
frequency-domain least squares. For our estimators, we are able to establish rates of
consistency (in L2 and L∞ norms) and a quantitative version of the Central Limit
Theorem, in Wasserstein distance. In particular, we derive explicit bounds for the rate
of convergence to the limiting Gaussian distribution by means of the rich machinery
of Stein-Malliavin methods (see [49] and Section 1.3); to the best of our knowledge,
this is the first Quantitative Central Limit Theorem established in the framework of
functional-valued stationary processes. Under stronger regularity conditions, we are
able to establish a weak convergence result for the kernel estimators; our results are
then illustrated by simulations.
The plan of this chapter is then as follows: in Section 3.2 we recall our basic model;
we show how, under isotropy, the model enjoys a number of symmetry properties
which greatly simplify our approach. The main results are then collected in Section
3.3, where we investigate rates of convergence and the Quantitative Central Limit
Theorem; we consider also weak convergence in Cp ([−1, 1]), under stronger regularity
conditions for the autoregressive kernels. Large parts of the proofs and many auxiliary
lemmas, some of possible independent interest, are collected in Sections 3.4 and in
the Appendix (Section 3.6). Finally, Section 3.5 provides numerical estimates on the
behaviour of our procedures.

1This chapter is partially based on the preprint Asymptotics for Spherical Functional Autore-
gressions [18], written jointly with Domenico Marinucci, accepted for publication in The Annals of
Statistics.
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Notation. Throughout this chapter we consider the real-valued basis of spherical
harmonics already defined in Section 1.2, and therefore the random coefficients will
be always real-valued random variables for all (`,m).
In the sequel, given any two positive sequences {ak, k ∈ N}, {bk, k ∈ N}, we shall
write ak ∼ bk if ∃c1, c2 > 0 such that c1bk ≤ ak ≤ c2bk, ∀k ∈ N. In addition, we will
denote with const a positive real constant, which may change from line to line; also,
we use ‖ · ‖L2(S2) for the usual L2 norm on the sphere, Λmin(A) and Λmax(A) for the
minimum and maximum eigenvalues of the matrix A, respectively, ‖A‖op for the
operator norm of A, i.e., ‖A‖op =

√
λmax(A′A), and Tr(A) for the trace of A.

3.2 Background and Assumptions

We briefly recall our model of interest, already introduced in Chapter 2. As usual,
by space-time spherical random field we mean a collection of random variables
{T (x, t), (x, t) ∈ S2 ×Z} such that, for every t ∈ Z, the mapping (x, ω) 7→ T (x, t, ω)
is B(S2)× F-measurable, for some probability space (Ω,F,P).
In particular, we consider (zero-mean) isotropic stationary random fields (see Def-
inition 2.1.14), which are also Gaussian. In this case, of course, weak isotropy-
stationarity entails strong isotropy-stationarity, i.e., the law of T (g·, · + τ) is the
same as the law of T (·, ·), in the sense of processes, for all g ∈ SO(3) and τ ∈ Z.
Thus, recall that, for any fixed t ∈ Z, there exists a random element Tt such that
T (·, t) = Tt P-a.s. (see Remark 2.1.16) and

T (x, t) =
∞∑
`=0

∑̀
m=−`

a`,m(t)Y`,m(x), (3.2.1)

where {Y`,m(·), ` ≥ 0, m = −`, . . . , `} is a standard basis of real spherical harmonics
(see Remark 1.2.2) and {a`,m(t), ` ≥ 0, m = −`, . . . , `} are (zero-mean) random
coefficients which satisfy

E[a`,m(t)a`′,m′(s)] = C`(t− s)δ`
′
` δ

m′
m , t, s ∈ Z.

The sequence {C`(0), ` ≥ 0} corresponds to the angular power spectrum of the
spherical field at a given time point, for which we will simply write {C`}. Also recall
that, for fixed t, s ∈ Z, the covariance function Γ(x, t, y, s) is easily shown to have a
spectral decomposition in terms of Legendre polynomials (Schoenberg’s Theorem
1.2.7, see also [8]), i.e., for every (x, t), (y, s) ∈ S2 × Z,

Γ(x, t, y, s) =
∞∑
`=0

C`(t− s)
2`+ 1

4π P`(〈x, y〉).

Consider now a Gaussian spherical white noise {Z(x, t), (x, t) ∈ S2 × Z} (see
Definition 2.2.1), i.e., a sequence of independent and identically distributed Gaussian
isotropic spherical random fields with the same covariance function

ΓZ(x, y) =
∞∑
`=0

2`+ 1
4π C`;ZP`(〈x, y〉),

∞∑
`=0

2`+ 1
4π C`;Z <∞.
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Moreover, assume that the collection of random variables
{
T (x, t), (x, t) ∈ S2 × Z

}
satisfies the autoregressive equation

T (x, t)− (Φ1T (·, t− 1))(x)− · · · − (ΦpT (·, t− p))(x)− Z(x, t) = 0, (3.2.2)

for all (x, t) ∈ S2×Z, where {Φj : j = 1, . . . , p} are p integral operators (see Definition
2.2.3) associated with p continuous isotropic kernel {kj : j = 1, . . . , p}. Hence, for
each j = 1, . . . , p, it holds that

kj(〈x, y〉) =
∞∑
`=0

φ`;j
2`+ 1

4π P`(〈x, y〉),

where {φ`;j , ` ≥ 0} are the eigenvalues of Φj and, for any (x, t) ∈ S2 × Z, we have

(ΦjT (·, t− j))(x) =
∞∑
`=0

∑̀
m=−`

φ`;ja`,m(t− j)Y`,m(x), in L2(Ω).

Furthermore,

a`,m(t) = φ`;1a`,m(t− 1) + · · ·+ φ`;pa`,m(t− p) + a`,m;Z(t),

and it is well-defined the sequence of associated polynomials φ` : C→ C, ` ≥ 0, such
that

φ`(z) = 1− φ`;1z − · · · − φ`;pzp. (3.2.3)

Condition 3.2.1. The sequence of polynomials (3.2.3) is such that

|z| < 1 + δ ⇒ φ`(z) 6= 0,

for some δ > 0. More explicitly, there are no roots in a δ-enlargement of the unit
disk, for all ` ≥ 0.

Remark 3.2.2. Recall that, under Condition 3.2.1, Equation (3.2.2) admits a
unique isotropic stationary solution; the proof is given in Section 2.2, along the same
lines as in [10].

Remark 3.2.3. The autocovariance function of an isotropic stationary SPHAR(1)
process (see Example 2.2.8) is easily seen to be given by (writing τ = t− s)

Γ(x, t, y, s) =
∞∑
`=0

C`(τ)2`+ 1
4π P`(〈x, y〉) =

∞∑
`=0

φ
|τ |
` C`;Z

1− φ2
`

2`+ 1
4π P`(〈x, y〉).

It is easy hence to envisage a number of parametric models for sphere-time covari-
ances; for instance, a simple proposal is

φ` = G× {|`− `∗|+ 1}−αφ , with `∗ ≥ 0, αφ > 2, 0 < G < 1,
C`;Z = GZ(1 + `)−αZ , with αZ > 2.

Here, the parameters αZ , αφ control, respectively, the smoothness of the innovation
process and the regularity of the autoregressive kernel (see [37]); the positive integer



42 3. Asymptotics for Spherical Functional Autoregressions

`∗ can be seen as a sort of "characteristic scale", where the power of the kernel is
concentrated. More generally, we can take φ` = G(`;α1, . . . , αq), where α1, . . . , αq
are fixed parameters and G is any function such that

sup
`
|G(`;α1, . . . , αq)| < 1 and

∑
`

(2`+ 1) |G(`;α1, . . . , αq)| <∞,

uniformly over all values of (α1, . . . , αq).

Condition 3.2.4 (Identifiability). The Gaussian spherical white noise process{
Z(x, t), (x, t) ∈ S2 × Z

}
is such that C`;Z > 0, for all ` ≥ 0.

Remark 3.2.5. The previous condition is an identifiability assumption; indeed, it
is simple to verify from our arguments below that for C`;Z = 0 the component of the
kernel corresponding to the `-th multipole is not observable, i.e., the AR(p) process
has the same distribution whatever the values of {φ`;j , j = 1, . . . , p} . It is possible,
however, to estimate the "sufficient" version of the kernel, i.e., its projection on the
relevant subspace, such that C`,Z > 0. The extension is straightforward and we avoid
it just for brevity and notational simplicity. Of course, as a consequence we have
that ˆ

S2×S2
ΓZ(x, y)f(x)f(y)dxdy > 0, ∀f(·) ∈ L2(S2), f(·) 6= 0.

3.3 Main Results
Throughout this chapter, we shall assume to be able to observe the projections of
the fields on the orthonormal basis {Y`m} , i.e., we assume to observe

a`,m(t) :=
ˆ
S2
T (x, t)Y`,m(x)dx, t = 1, . . . , n.

The estimator we shall focus on is a form of least squares regression on an increasing
subset of the real orthonormal system {Y`,m}; more precisely, we shall define k(·) :=
(k1(·), · · · , kp(·))′ for the vector of nuclear kernels, a growing sequence of integers
LN , LN →∞ as N →∞; and a vector of estimators

k̂N (·) := (k̂1;N (·), . . . , k̂p;N (·))′ = arg min
k(·)∈PpN

N∑
t=1

∥∥∥∥∥∥Tt+p −
p∑
j=1

ΦjTt+p−j

∥∥∥∥∥∥
2

L2(S2)

, (3.3.1)

where N := n− p, N > p, and PpN is the Cartesian product of p copies of

PN = span
{2`+ 1

4π P`(·), ` ≤ LN
}
.

As common in the autoregressive context, we drop the first p observations when
computing our estimators, in order to avoid initialization issues. We shall write
LN (·) for the function LN : [−1, 1]→ R,

LN (z) =
LN∑
`=0

2`+ 1
16π2 P

2
` (z), z ∈ [−1, 1]. (3.3.2)
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Note that

LN (1) = LN (−1) =
LN∑
`=0

2`+ 1
16π2 = (LN + 1)2

16π2 ;

on the other hand, for z ∈ (−1, 1) we have the identity (see [67, 28])
LN∑
`=0

2`+ 1
16π2 P

2
` (z) = LN + 1

16π2

[
P ′LN+1(z)PLN (z)− P ′LN (z)PLN+1(z)

]
;

it is then possible to show that (see Lemma 3.6.4 in the Appendix)

LN (z) ' 2LN
π
√

1− z2
, as LN →∞, (3.3.3)

where ' indicates that the ratio of left- and right-hand sides converges to unity.
For our results, we need slightly stronger assumptions on the "high frequency"
behaviour of the kernels kj(·). More precisely, we shall introduce the following:

Condition 3.3.1 (Smoothness). For all j = 1, . . . , p, there exists positive constants
βj , γj such that

|φ`;j | ≤
γj
`βj

, βj > 1, ` > 0. (3.3.4)

We let β∗ = minj∈{1,...,p} βj. We shall say that this condition is satisfied in the strong
sense if βj > 2, j = 1, . . . , p.

Remark 3.3.2. It is readily seen that Condition 3.3.1 leads to Hilbert-Schmidt
operators, since it implies∑`(2`+1)φ2

`;j <∞, j = 1, . . . , p; whereas the strong version
Condition 3.3.1 is specific for nuclear operators, since it entails ∑`(2`+1)|φ`;j | <∞,
j = 1, . . . , p, see again [32].

Remark 3.3.3. Condition 3.3.1 is interpretable in terms of the regularity of each
kernel kj(·). Indeed, in [37] it is shown that

∞∑
`=0
|φ`;j |2

2`+ 1
4π (1 + `2η) <∞

implies integrability of the first η derivatives of kj(·), i.e., kj(·) belongs to the Sobolev
space W1,η.

Our first result refers to the asymptotic consistency of the kernel estimators that we
just introduced.

Theorem 3.3.4 (Consistency). Consider k̂N (·) in Equation (3.3.1). Under Condi-
tions 3.2.1, 3.2.4 and 3.3.1, for LN ∼ Nd, 0 < d < 1, we have that

E
[ˆ 1

−1

∥∥∥k̂N (z)− k(z)
∥∥∥2
dz

]
= O

(
Nd−1 +N2d(1−β∗)

)
. (3.3.5)

Moreover, under Conditions 3.2.1, 3.2.4 and 3.3.1 (in the strong sense), for LN ∼
Nd, 0 < d < 1

3 ,

E
[

sup
z∈[−1,1]

∥∥∥k̂N (z)− k(z)
∥∥∥] = O

(
N (3d−1)/2 +Nd(2−β∗)

)
.
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Remark 3.3.5 (Optimal choice of d). The optimal choice of d, in terms of the best
convergence rates, is given by d∗ = 1

2β∗−1 , leading to the exponents 2−2β∗
2β∗−1 and 2−β∗

2β∗−1 ,
respectively. Heuristically, the result can be explained as follows: larger values of
β∗ entail higher regularity/smoothness properties of the kernels to be estimated; as
usual in nonparametric estimation, more regular functions can be estimated with
better convergence rates, as the bias term is controlled more efficiently. Indeed, for
d = d∗ and β∗ →∞, the mean squared error approximates the parametric rate 1/N ,
as expected.

Remark 3.3.6 (Plug-in estimates). For applications to empirical data, the optimal
rate can be implemented by means of plug-in techniques, i.e., estimating (under
additional regularity conditions) the value of the parameter β∗ by means of first step-
estimators of the coefficients {φ`,j} . Let us sketch the main ideas for this approach,
omitting some details for brevity. Consider for simplicity the SPHAR(1) case, and
let us make Condition 3.3.1 stronger by assuming that

|φ`| =
γ

`β
+ o

( 1
`β

)
, some γ > 0, β > 1, ∀` > 0.

Consider the estimator

φ̂`,N :=
∑
t a`,m(t− 1)a`,m(t)∑

t a
2
`,m(t− 1)

, ` = 0, 1, 2, . . . ,

from which we can now build the pseudo log-regression model

log φ̂2
`,N = log

φ̂2
`,N

γ2`−2β + log
(
γ2`−2β

)
= log

(
γ2
)
− 2β log `+ v`

v` := log
φ̂2
`,N

γ2`−2β , ` = 0, 1, 2, . . . ,

where the "regression residuals" {v`} are independent over `, with asymptotically mean
zero and bounded variance as N → ∞. It is then possible to study the asymptotic
consistency of the OLS-like estimator (see also [63] for the related log-periodogram
estimator)

β̂N := −
∑
`

{
log `× log φ̂2

`,N

}
2
∑
` {log `}2

.

The optimal rates can then be consistently estimated by means of the plug-in estimates
d̂∗N = 1

2β̂N−1
.

A more rigorous and complete investigation on these issues is currently in preparation
and is not reported here for brevity’s sake.

Our second result refers to a Quantitative Central Limit Theorem for the kernel
estimators. Consider k̂N (·) in Equation (3.3.1) and, for any m ∈ N, any z1, . . . , zm ∈
(−1, 1), z1 6= · · · 6= zm, define the mp× 1 vectors

KN = KN (z1, z2, . . . , zm) :=


√

N
LN (z1)

(
k̂N (z1)− k(z1)

)
...√

N
LN (zm)

(
k̂N (zm)− k(zm)

)
 , Z

d=Nmp (0mp, Imp) .
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Theorem 3.3.7. Under Conditions 3.2.1, 3.2.4 and 3.3.1 (in the strong sense), for
LN ∼ Nd, d > 1

2β∗−2 , we have that

dW (Z,KN ) = O
(
N−1/2 +N1/2+d(1−β∗) +N−d logN

)
.

An immediate Corollary is the following.

Corollary 3.3.8. Under the same Conditions and notation as in Theorem 3.3.7,
for any fixed z ∈ [−1, 1], we have that√

N

LN (z)
(
k̂N (z)− k(z)

)
→ Np (0p, Ip) , N →∞.

Remark 3.3.9. As usual, the values of d that guarantee asymptotic normality do
not minimize the mean squared error; in fact, we have that d∗ = 1

2β∗−1 <
1

2β∗−2 ,
which is the minimal value of d for Theorem 3.3.7 to hold. Indeed, asymptotic
Gaussianity requires undersmoothing, i.e., a value of d which makes the asymptotic
bias negligible, rather than of the same order as the variance. Once again the rate
can be taken to approach N−1/2 for β∗ →∞.

For our third and final result, we need to strengthen the conditions on the regularity
of the autoregressive kernels.

Condition 3.3.10. The kernel kj(·) admits a finite expansion in the Legendre basis,
i.e., there exist an (arbitrary large but finite) integer L > 0 such that

ˆ 1

−1
kj(z)P`(z)dz = 0, for all j = 1, . . . , p and ` > L.

Condition 3.3.10 clearly implies that there exist finite integers L1, . . . , Lp ≤ L such
that

kj(z) =
Lj∑
`=0

2`+ 1
4π φ`;jP`(z), z ∈ [−1, 1], j = 1, . . . , p;

we also need to introduce, for ` = 0, 1, 2, . . . , the p× p autocovariance matrix

Γ` :=


C` C`(1) · · · C`(p− 1)
C`(1) C` · · · C`(p− 2)

...
... . . . ...

C`(p− 1) C`(p− 2) · · · C`

 ,

and we shall write Wp(·) for the zero-mean, p-dimensional Gaussian process with
covariance function

Γk(z, z′) =
L∑
`=0

C`;ZΓ−1
`

2`+ 1
16π2 P`(z)P`(z

′).

We are now able to state our last theorem.
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Theorem 3.3.11. Under Conditions 3.2.1, 3.2.4 and 3.3.10, we have that
√
N
(
k̂N (·)− k(·)

)
=⇒Wp (·) , N →∞,

where =⇒ denotes weak convergence in Cp([−1, 1]) (the space of continuous functions
from [−1, 1] to Rp, with the standard uniform metric).

Remark 3.3.12. At first sight, it may look surprising that the weak convergence for
the estimators in Theorem 3.3.11 occurs at a faster rate

√
N than the convergence

in finite-dimensional distributions of Theorem 3.3.7. This comparison, however, is
misleading; indeed, in Theorem 3.3.7 we are not assuming the expansion of the kernels
to be finite, and therefore we need to include a growing number of multipoles LN , to
ensure that bias terms are asymptotically negligible. On the other hand, note that
weak convergence cannot hold under the conditions of Theorem 3.3.7, as the limiting
finite dimensional distributions correspond to Gaussian independent random variables
for any choice of fixed points (z1, . . . , zm) : no Gaussian process with measurable
trajectories can have these finite-dimensional distributions. The limiting distribution
is characterized by the nuisance parameters {C`, C`(1), . . . , C`(p− 1), C`;Z} ; for
brevity’s sake, estimation of these parameters is deferred to future work.

3.4 Proofs of the Main Results
We now present the main arguments of our proofs, which are based on a number of
technical results collected in the Appendix (Section 3.6). For ` = 0, 1, 2, . . . , it is
convenient to introduce the N(2`+ 1)-dimensional vectors

Y`;N := (a`,−`(p+ 1), . . . , a`,`(p+ 1), . . . , a`,`(n))′,
ε`;N := (a`,−`;Z(p+ 1), . . . , a`,`;Z(p+ 1), . . . , a`,`;Z(n))′;

moreover, let us consider the N(2`+ 1)× p matrix

X`;N := {Y`;N−1 : Y`;N−2 : · · · : Y`;N−p} ,

where

Y`;N−j := (a`,−`(p+ 1− j), . . . , a`,`(p+ 1− j), . . . , a`,`(n− j))′, j = 1, . . . , p.

We start from the proof of the consistency results.

Proof (Theorem 3.3.4). It is easy to see that we have

k̂N (·) = arg min
k(·)∈PpN

n∑
t=p+1

∥∥∥∥∥∥Tt −
p∑
j=1

ΦjTt−j

∥∥∥∥∥∥
2

L2(S2)

=
LN∑
`=0
φ̂`;N

2`+ 1
4π P`(·),

where

φ̂`;N := (φ̂`;N (1), . . . , φ̂`;N (p))′
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= arg min
φ`∈Rp

n∑
t=p+1

∑̀
m=−`

a`,m(t)−
p∑
j=1

φ`;ja`,m(t− j)

2

.

Now, let rN (z) be the difference between the kernel and its truncated version

kN (·) =
LN∑
`=0
φ`

2`+ 1
4π P`(z),

i.e.,

rN (z) = k(z)− kN (z) =
∞∑

`=LN+1
φ`

2`+ 1
4π P`(z),

where the equality holds in the L2-sense. Then,

E
[ˆ 1

−1

∥∥∥k̂N (z)− k(z)
∥∥∥2
dz

]
= E

[ˆ 1

−1

∥∥∥k̂N (z)− kN (z)
∥∥∥2
dz

]
+
ˆ 1

−1
‖rN (z)‖2 dz,

(3.4.1)

since E
[´ 1
−1

〈
k̂N (z)− kN (z), rN (z)

〉
dz
]

= 0, from orthogonality of Legendre poly-
nomials.
Now notice that
ˆ 1

−1

∥∥∥k̂N (z)− kN (z)
∥∥∥2
dz =

LN∑
`=0

LN∑
`′=0

〈
φ̂`;N − φ`, φ̂`′;N − φ`′

〉 2`+ 1
4π

2`′ + 1
4π

ˆ 1

−1
P`(z)P`′(z)dz

=
LN∑
`=0

LN∑
`′=0

〈
φ̂`;N − φ`, φ̂`′;N − φ`′

〉 2`+ 1
4π

2`′ + 1
4π

2
2`+ 1δ

`′
`

=
LN∑
`=0

∥∥∥φ̂`;N − φ`∥∥∥2 2`+ 1
8π2 .

Then, from Lemma 3.6.2 in the Appendix,

E
[ˆ 1

−1

∥∥∥k̂N (z)− kN (z)
∥∥∥2
dz

]
=

LN∑
`=0

E
∥∥∥φ̂`;N − φ`∥∥∥2 2`+ 1

8π2 ≤ constLN + 1
N

.

On the other hand,
ˆ 1

−1
‖rN (z)‖2 dz =

∞∑
`=LN+1

∞∑
`′=LN+1

〈φ`,φ`′〉
2`+ 1

4π
2`′ + 1

4π

ˆ 1

−1
P`(z)P`′(z)dz

=
∞∑

`=LN+1

∞∑
`′=LN+1

〈φ`,φ`′〉
2`+ 1

4π
2`′ + 1

4π
2

2`+ 1δ
`′
`

=
∞∑

`=LN+1
‖φ`‖2

2`+ 1
8π2 .

Therefore, under Condition 3.3.1 and for LN ∼ Nd, 0 < d < 1, we have
ˆ 1

−1
‖rN (z)‖2 dz = O

(
N2d(1−β∗)

)
,
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and
E
[ˆ 1

−1

∥∥∥k̂N (z)− k(z)
∥∥∥2
dz

]
= O

(
Nd−1 +N2d(1−β∗)

)
,

where β∗ = minj∈{1,...,p} βj , as claimed.
Under the strong version of Condition 3.3.1, each kernel kj(·) is defined for all
z ∈ [−1, 1] as the pointwise limit of its expansion in terms of Legendre polynomials
and

E
[

sup
z∈[−1,1]

∥∥∥k̂N (z)− k(z)
∥∥∥] ≤ E

[
sup

z∈[−1,1]

∥∥∥k̂N (z)− kN (z)
∥∥∥]+ sup

z∈[−1,1]
‖rN (z)‖ ,

by the triangle inequality. Hence, for the first component we have

E

 sup
z∈[−1,1]

∥∥∥∥∥∥
LN∑
`=0

(
φ̂`;N − φ`

) 2`+ 1
4π P`(z)

∥∥∥∥∥∥
 ≤ LN∑

`=0
E
∥∥∥φ̂`;N − φ`∥∥∥ 2`+ 1

4π

≤ const
LN∑
`=0

√
2`+ 1√
N

≤ const(LN + 1)3/2
√
N

,

again in view of Lemma 3.6.2 in the Appendix and the Cauchy-Schwartz inequality.
On the other hand,

sup
z∈[−1,1]

‖rN (z)‖ ≤
∞∑

`=LN+1
‖φ`‖

2`+ 1
4π .

Therefore, again under the strong version of Condition 3.3.1 and for LN ∼ Nd, 0 <
d < 1

3 , we have
sup

z∈[−1,1]
‖rN (z)‖ = O

(
Nd(2−β∗)

)
and thus

E
[

sup
z∈[−1,1]

∥∥∥k̂N (z)− k(z)
∥∥∥] = O

(
N (3d−1)/2 +Nd(2−β∗)

)
.

as claimed.

We are now in the position to establish the Quantitative Central Limit Theorem.

Proof (Theorem 3.3.7). Let us recall that the minimizing estimator takes the form

k̂N (·) = arg min
k(·)∈PpN

n∑
t=p+1

∥∥∥∥∥∥Tt −
p∑
j=1

ΦjTt−j

∥∥∥∥∥∥
2

L2(S2)

=
LN∑
`=0
φ̂`;N

2`+ 1
4π P`(·),
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where

φ̂`;N = arg min
φ`∈Rp

n∑
t=p+1

∑̀
m=−`

a`,m(t)−
p∑
j=1

φ`;ja`,m(t− j)

2

= (X ′`;NX`;N )−1X ′`;NY`;N = φ` + (X ′`;NX`;N )−1X ′`;Nε`;N .

We shall introduce some more notation:

A`;N := 1
C`N(2`+ 1)X

′
`;NX`;N , Σ` := E[A`;N ] = Γ`

C`
,

and
B`;N := 1

C`
√
N(2`+ 1)

X ′`;Nε`;N .

Therefore √
N(2`+ 1)

(
φ̂`;N − φ`

)
= A−1

`;NB`;N .

Heuristically, the proof of the Quantitative Central Limit Theorem can be described
as follows: in order to be able to exploit Stein-Malliavin techniques, we need to deal
with variables belonging to some q-th order chaos; now the ratio above does not
fulfill this requirement, because A−1

`;N is a random quantity which does not belong
to any Hq. On the other hand, componentwise we have B`;N ∈ H2, for each `. We
shall then show that it is possible to replace A−1

`;N by its (deterministic) probability
limit Σ−1

` , without affecting asymptotic results; because our kernel estimators will
be written as linear combinations of φ̂`;N , the proof can be completed by a careful
investigation of multivariate fourth-order cumulants.
Let us now make the previous argument rigorous. Let KN and UN be two mp-
dimensional random vectors, defined as

KN :=


√

N
LN (z1)

(
k̂N (z1)− k(z1)

)
...√

N
LN (zm)

(
k̂N (zm)− k(zm)

)
 ,

and

UN =

UN (z1)
...

UN (zm)

 :=


1√
LN (z1)

∑LN
`=0 Σ−1

` B`;N
√

2`+1
4π P`(z1)

...
1√

LN (zm)

∑LN
`=0 Σ−1

` B`;N
√

2`+1
4π P`(zm)

 .
In particular, E[UN ] = 0mp and E[UNU ′N ] = VN , where VN is a block matrix whose
generic ij-th block, i, j ∈ {1, . . . ,m}, is given by

VN (i, j) = E[UN (zi)U ′N (zj)]

= 1√
LN (zi)

1√
LN (zj)

LN∑
`=0

C`;Z
C`

Σ−1
`

2`+ 1
16π2 P`(zi)P`(zj).
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Now, consider Z d= Nmp(0mp, Imp) and ZN
d= Nmp(0mp, VN ). Applying the triangle

inequality twice, it follows that

dW (Z,KN ) ≤ dW (Z,UN ) + dW (UN ,KN )
≤ dW (Z,ZN ) + dW (ZN , UN ) + dW (UN ,KN ).

From [49, Equation 6.4.2, page 126], we have

dW (Z,ZN ) ≤ √mpmin{‖V −1
N ‖op‖VN‖1/2op , 1}‖VN − Imp‖HS,

where ‖A‖HS =
√
Tr(A′A), and we observe that

‖VN − Imp‖HS ≤ mp‖VN − Imp‖∞ = O
(
N−d logN

)
, (3.4.2)

from Lemmas 3.6.3 and 3.6.4 in the Appendix. Indeed, for every i ∈ {1, . . . ,m},

‖VN (i, i)− Ip‖HS ≤
const

LN + 1

LN∑
`=0

∥∥∥∥C`;ZC` Σ−1
` − Ip

∥∥∥∥
∞

(2`+ 1)

≤ const

LN + 1;

the logarithmic term comes from Equation (3.6.8) in the Appendix Lemma 3.6.4.
Equation (3.4.2) entails that VN → Imp, thus we have ‖V −1

N ‖op‖VN‖1/2op → 1, as
N →∞, and

dW (Z,ZN ) = O
(
N−d logN

)
. (3.4.3)

Let us recall again from [49, page 122] (second point of Theorem 6.2.2) that

dW (ZN , UN ) ≤ √mp‖V −1
N ‖op‖VN‖1/2op m(UN ),

where

m(UN ) = 2mp
m∑
i=1

p∑
j=1

√√√√√Cum4

 1√
LN (zi)

LN∑
`=0

b̃`;N (j)
√

2`+ 1
4π P`(zi)

,
b̃`;N (j) being the j-th element of Σ−1

` B`;N . Moreover, for the j-th element of Σ−1
` B`;N

we have

Cum4
[
b̃`;N (j)

]
= 6
N(2`+ 1)

(
C`;Z
C`

s`(j, j)
)2
,

see Equation (3.6.4) in Lemma 3.6.1. In addition,

Cum4

 1√
LN (zi)

LN∑
`=0

b̃`;N (j)
√

2`+ 1
4π P`(zi)


= 1
L2
N (zi)

LN∑
`=0

Cum4
[
b̃`;N (j)

] (2`+ 1)2

(4π)4 P 4
` (zi),
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in view of the independence across different multipoles `. Therefore

Cum4

 1√
LN (zi)

LN∑
`=0

b̃`;N (j)
√

2`+ 1
4π P`(zi)


= 6
NL2

N (zi)

LN∑
`=0

(
C`;Z
C`

s`(j, j)
)2 2`+ 1

(4π)4 P
4
` (zi)

≤ 6
NL2

N (zi)

LN∑
`=0

[
C`;Z
C`

Tr(Σ−1
` )
]2 2`+ 1

(4π)4 P
4
` (zi)

≤ const

N(LN + 1)2

LN∑
`=0

(2`+ 1)P 4
` (zi).

Thus, we have

m(UN ) ≤ const m
2p2

LN + 1

√
logN
N

,

and
dW (ZN , UN ) = O

(
N−(d+1/2)(logN)1/2

)
. (3.4.4)

Now, consider the decomposition√
N

LN (z)
(
k̂N (z)− k(z)

)
= 1√

LN (z)

LN∑
`=0

√
N(2`+ 1)

(
φ̂`;N − φ`

) √2`+ 1
4π P`(z)

−
√

N

LN (z)

∞∑
`=LN+1

φ`
2`+ 1

4π P`(z)

= 1√
LN (z)

LN∑
`=0

Σ−1
` B`;N

√
2`+ 1
4π P`(z)

+ 1√
LN (z)

LN∑
`=0

[A−1
`;N − Σ−1

` ]B`;N
√

2`+ 1
4π P`(z)

−
√

N

LN (z)

∞∑
`=LN+1

φ`
2`+ 1

4π P`(z).

Without loss of generality, we shall focus on the case m = 1; the more general
argument is basically identical, with a slightly more cumbersome notation. For
z ∈ (−1, 1), ∥∥∥∥∥∥ 1√

LN (z)

LN∑
`=0

[A−1
`;N − Σ−1

` ]B`;N
√

2`+ 1
4π P`(z)

∥∥∥∥∥∥
≤ const√

LN + 1

LN∑
`=0

∥∥∥[A−1
`;N − Σ−1

` ]B`;N
∥∥∥√2`+ 1|P`(z)|,

and then,

E

∥∥∥∥∥∥ 1√
LN (z)

LN∑
`=0

[A−1
`;N − Σ−1

` ]B`;N
√

2`+ 1
4π P`(z)

∥∥∥∥∥∥
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≤ const√
LN + 1

LN∑
`=0

E
∥∥∥[A−1

`;N − Σ−1
` ]B`;N

∥∥∥√2`+ 1|P`(z)|

≤ const√
LN + 1

LN∑
`=0

1√
N(2`+ 1)

√
2`+ 1|P`(z)|

=O
( 1√

N

)
, (3.4.5)

where for the second inequality we have exploited the Appendix Lemma 3.6.2, while
for the last step the Hilb’s asymptotics (3.6.11) in the Appendix (see, also, [67, 75]).
Likewise,∥∥∥∥∥∥

√
N

LN (z)

∞∑
`=LN+1

φ`
2`+ 1

4π P`(z)

∥∥∥∥∥∥ ≤ const
√

N

LN + 1

∞∑
`=LN+1

‖φ`‖(2`+ 1)|P`(z)|

≤ const
√

N

LN + 1

∞∑
`=LN+1

‖φ`‖
√

2`+ 1

= O
( 1
Nd(β∗−1)−1/2

)
. (3.4.6)

From Equations (3.4.5) and (3.4.6),

dW (UN ,KN ) = O
(
N−1/2 +N1/2+d(1−β∗)

)
. (3.4.7)

In the end, combining Equations (3.4.3), (3.4.4) and (3.4.7), it holds that

dW (Z,KN ) = O
(
N−1/2 +N1/2+d(1−β∗)

)
.

Note that the constant in this bound may depend on the choice of m and z1, . . . , zm.

We can now give the proof of the third (and final) result.

Proof (Theorem 3.3.11). Under Condition 3.3.10, we have that, for z ∈ [−1, 1],

√
N
(
k̂N (z)− k(z)

)
=

L∑
`=0

√
N(2`+ 1)

(
φ̂`;N − φ`

) √2`+ 1
4π P`(z)

=
L∑
`=0

A−1
`;NB`;N

√
2`+ 1
4π P`(z)

=
L∑
`=0

Σ−1
` B`;N

√
2`+ 1
4π P`(z)

+
L∑
`=0

[A−1
`;N − Σ−1

` ]B`;N
√

2`+ 1
4π P`(z). (3.4.8)

Then,

sup
z∈[−1,1]

∥∥∥∥∥
L∑
`=0

[A−1
`;N − Σ−1

` ]B`;N
√

2`+ 1
4π P`(z)

∥∥∥∥∥ ≤
L∑
`=0

∥∥∥[A−1
`;N − Σ−1

` ]B`;N
∥∥∥ √2`+ 1

4π ,
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and hence

E
[

sup
z∈[−1,1]

∥∥∥∥∥
L∑
`=0

[A−1
`;N − Σ−1

` ]B`;N
√

2`+ 1
4π P`(z)

∥∥∥∥∥
]

≤
L∑
`=0

E
∥∥∥[A−1

`;N − Σ−1
` ]B`;N

∥∥∥ √2`+ 1
4π → 0, N →∞,

in view of the Appendix Lemma 3.6.2. Then the second part of the sum in (3.4.8)
goes to zero in probability. Since the sum (over `) has independent components,
we just need to prove that, for each ` = 0, 1, 2, . . . , L, {B`;NP`(·)} forms a tight
sequence. Using the tightness criterion given in [9, Equation 13.14, page 143], it is
sufficient to show that, for z1 ≤ z ≤ z2,

E‖B`;NP`(z)−B`;NP`(z1)‖‖B`;NP`(z2)−B`;NP`(z)‖
= |P`(z)− P`(z1)||P`(z2)− P`(z)|E‖B`;N‖2

≤ pC`;Z
C`

Q2
` |z − z1||z2 − z|

≤ pC`;Z
C`

Q2
` (z2 − z1)2.

Convergence of the finite-dimensional distributions is standard and we omit the
details, which are close to those given in the proofs of the previous Theorem. Thus
the sequence converges weakly to a zero-mean multivariate Gaussian process with
covariance function ΓkL(z, z′) =

∑L
`=0C`;ZΓ−1

`
2`+1
16π2P`(z)P`(z′).

3.5 Some Numerical Evidence

In this section, we present some short numerical results to illustrate the models and
methods that we discussed in this chapter.
We stress first that random fields on the sphere cross time can be very conveniently
generated by combining the general features of Python with the HEALPix software
(see [27] and https://healpix.sourceforge.io). More precisely, HEALPix (which
stands for Hierarchical Equal Area and iso-Latitude Pixelation) is a multi-purpose
computer software package for a high resolution numerical analysis of functions on the
sphere, based on a clever tessellation scheme: the spherical surface is hierarchically
partitioned into curvilinear quadrilaterals of equal area (at a given resolution),
distributed on lines of constant latitude, as suggested in the name. In particular,
we shall make use of healpy, which is a Python package based on the HEALPix
C++ library. HEALPix was developed to efficiently process Cosmic Microwave
Background data from cosmological experiments (like Planck, [60]), but it is now
used in many other branches of Astrophysics and applied sciences.
In short, HEALPix allows to create spherical maps according to the spectral repre-
sentation (1.2.4) (see Section 1.2.1), accepting in input either an array of random
coefficients {a`,m}, or the angular power spectrum {C`}, by means of the routines
alm2map and synfast: in the latter case, random {a`,m} are generated according
to a Gaussian zero mean distribution with variance {C`}. The routine is extremely

https://healpix.sourceforge.io


54 3. Asymptotics for Spherical Functional Autoregressions

efficient and allows to generate maps of resolution up to a few thousands multipoles
in a matter of seconds on a standard laptop computer.

Figure 3.1. Two realizations of sphere-cross-time random fields at times t = 1, 2, 3, 4
(clockwise). Upper panel: maximum resolution Lmax = 30. Lower panel: maximum
resolution Lmax = 200.

In our case, however, we need random fields where the random spherical harmonics
coefficients have themselves a temporal dependence structure. For this reason, we
implemented a simple routine in Python, to simulate Gaussian {a`,m(t)} processes,
each following an AR(p) dependence structure. These random harmonic coefficients
are then uploaded into HEALPix, to generate maps such as those that are given
in Figure 3.1. In particular, in these two cases we fixed Lmax = max(`) = 30, 200,
respectively. Then we generated {a`,m(t)} according to stationary AR(1) processes,
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with parameters φ` ' const × `−3; similarly, we took here C`;Z ' const × `−2. In
Figure 3.1, we report the realization for the first 4 periods, simply for illustrative
purposes.
We are now in the position to use simulations to validate the previous results. In
our first Tables 3.1-3.3, we report for B = 1000 Monte Carlo replications the values
of the "variance" and "bias" terms, i.e., the first and second summand in the mean
squared error equation (3.4.1); the second term is actually deterministic, and it
is reported to illustrate the approximation one obtains by cutting the expansion
to a finite multipole value. In the third column, we report, the actual (squared)
L2 error. On the left-hand side, we fix the number of multipoles to be exploited
in the reconstruction of the kernel; on the right-hand side, we consider a sort of
"oracle" estimator, where the number of multipoles grows with the optimal rate
N

1
2β∗−1 . As before, we took C`;Z ' const× `−2, φ` ' const× `−β for β = 2, 2.5, 3;

for N = 100, 300, 700 the left-hand side uses LN ∼ N0.6, while the right-hand side
takes LN ∼ N

1
2β∗−1 , as explained above.

We note how the estimators perform very efficiently, and show the errors scale
approximately as Nα, where α ≈ 2−2β∗

2β∗−1 , as predicted by our computations, see
Remark 3.3.5. In particular, Figure 3.2 shows the behaviour of the L2 error, as a
function of N . For β∗ = 2, 2.5, 3, the empirical mean squared error is computed over
a grid of N which ranges from 50 to 1000 in steps of 50. The green lines represent
respectively the curves

y = exp(−4.28)x−0.667, y = exp(−3.7)x−0.75, y = exp(−3.7)x−0.80. (3.5.1)

As explained earlier, the exponents match our theoretical results, whereas the
multiplicative constants have been chosen by a least squares fit.

N Variance Bias MSE
100 0.00082 0.00006 0.00088
300 0.00057 0.00001 0.00059
700 0.00041 0.00001 0.00042

N Variance Bias MSE
100 0.00041 0.00023 0.00065
300 0.00022 0.00010 0.00031
700 0.00012 0.00005 0.00018

Table 3.1. L2 errors obtained with β∗ = 2; LN ∼ N0.6 (left) and LN ∼ N
1

2β∗−1 (right).

N Variance Bias MSE
100 0.00081 0.00007 0.00088
300 0.00056 0.00001 0.00057
700 0.00041 0.00000 0.00041

N Variance Bias MSE
100 0.00063 0.00014 0.00077
300 0.00029 0.00006 0.00035
700 0.00016 0.00003 0.00019

Table 3.2. L2 errors obtained with β∗ = 2.5; LN ∼ N0.6 (left) and LN ∼ N
1

2β∗−1 (right).

N Variance Bias MSE
100 0.00082 0.00001 0.00084
300 0.00058 0.00000 0.00058
700 0.00041 0.00000 0.00041

N Variance Bias MSE
100 0.00041 0.00021 0.00062
300 0.00021 0.00004 0.00025
700 0.00009 0.00004 0.00013

Table 3.3. L2 errors obtained with β∗ = 3; LN ∼ N0.6 (left) and LN ∼ N
1

2β∗−1 (right).
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Figure 3.2. L2 errors (dots) over a grid ofN , for β∗ = 2, 2.5, 3 (clockwise) and LN ∼ N
1

2β∗−1 .
The green lines represent the (calibrated) theoretical upper bounds in Equation (3.5.1).

We can now focus quickly on the main result of this chapter, dealing with the
Quantitative Central Limit Theorem, in Wasserstein distance; the latter is computed
following the Python routine (scipy.stats.wasserstein distance). We consider
again a model where the autoregressive parameter and the angular power spectra
are exactly the same as in the previous settings, in particular, taking β = 3 and
d = 0.5, up to integer approximations; we fix Lmax = 1000 for the number of
components under the null hypothesis. Under these circumstances, we evaluate
(univariate) Wasserstein distances for the kernel estimators at m = 9 different
locations, performing B = 10000 Monte Carlo replications.
In our simulations, we took a number of time-domain observations ranging from
N = 100 to N = 1000 in steps of 100; it should be noted that huge sample sizes are
quite common when dealing with sphere-cross-time data, see, e.g., the NCEP/NCAR
reanalysis datasets [34] for atmospheric research. In Table 3.4 we report for brevity
a subset of these results, while the full sample is considered in Figure 3.3.
Again, we note that simulations track closely the theoretical predictions. More
precisely, by our theoretical upper bound, we expect the Wasserstein distance
dW (·, ·) to decay faster than N−0.5 (up to logarithmic factors) in the setting of Table
3.4, in good agreeement with simulations. To help visualize this behaviour, we report
in Figure 3.3 the decay of numerically estimated Wasserstein distances for KN (z)
(see Theorem 3.3.7) considered for three different values z = −0.5, 0, 0.5, for N in



3.5 Some Numerical Evidence 57

steps of 100 ranging from 100 to 1000; in blue, we reproduce also the expected
upper bound, of order logN ×N−0.5. It is evident that the realized values are well
controlled by the theoretical bound, with the exception of the smallest samples.

N\z -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
100 0.52 0.15 0.70 0.19 0.69 0.66 0.42 1.13 0.79
500 0.04 0.10 0.11 0.11 0.10 0.08 0.08 0.13 0.26
1000 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.07

Table 3.4. Wasserstein distances obtained with β∗ = 3 and LN ∼ N0.5.

Figure 3.3. Wasserstein distances for z = −0.5, 0, 0.5 and theoretical upper bound
logN ×N−0.5.

Remark 3.5.1. Although the setting considered in this chapter is mainly theoretical,
we believe that the models and procedures introduced here have plenty of potential for
important applications. A possible dataset which is in our view amenable to SPHAR
modeling is the NCEP reanalysis catalogue (see [34]), which provides the near-surface
air temperature of the planet Earth over a grid of 94× 192 unique spatial locations
with a time span of 50 years (starting in 1948), sampled every day; overall, then,
there are publicly available 18048× 18250 space-cross-time observations. Clearly for
temperature (and, more generally, climate) variables we cannot expect isotropy to
hold exactly, due to the presence of features which depend on the location on the
surface of the Earth; our idea, however, is that these anisotropic components can
be estimated and removed in a preliminary stage of the analysis, just like trend and
cyclical components are usually subtracted from time series data before standard
ARMA models are implemented (see [12, Section 1.4]). These topics will be the
object of a future, more applied work.
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3.6 Appendix

Throughout this appendix, we assume that Conditions 3.2.1 and 3.2.4 hold. Under
these assumptions the proof that Equation 3.2.2 admits a unique stationary and
isotropic solution can be given along the same lines as in [10] and it is omitted for
brevity’s sake; see Chapter 2 for more discussion and details. Note that, under
these two Conditions, the variance C` can be written in terms of the coefficients
φ`;j , j = 1, . . . , p, the autocorrelations ρ`(j) = C`(j)/C`, j = 1, . . . , p, and the error
variance C`;Z , namely,

C` = C`;Z
1− φ`;1ρ`(1)− · · · − φ`;pρ`(p)

> 0, ` ≥ 0.

Hence,

0 < C`;Z
C`

= 1− φ`;1ρ`(1)− · · · − φ`;pρ`(p),

and there exists a positive constant φ∗ such that, uniformly over `,

p∑
j=1

φ`;jρ`(j) ≤ φ∗ < 1. (3.6.1)

Recall that C`;Z/C` and C`/C`;Z are (in absolute value) bounded by positive con-
stants since both converge to 1 as `→∞. Now, we denote with g`(λ) the correlation
spectral density

g`(λ) := f`(λ)
C`

= 1
2π

∞∑
τ=−∞

ρ`(τ)eiλτ

= 1
2π

1− φ`;1ρ`(1)− · · · − φ`;pρ`(p)
|1− φ`;1eiλ − · · · − φ`;peiλp|2

, λ ∈ [−π, π],

where ρ`(·) := C`(·)/C` is the autocorrelation function, and we recall that Σ` is
the p× p matrix of autocorrelations, with ij-th element ρ`(i− j). Since g`(·) is a
continuous symmetric function on [−π, π], it follows that (see [76])

2πg` ≤ λmin(Σ`) ≤ λmax(Σ`) ≤ 2πg`, (3.6.2)

where g` and g` are the minimum and maximum of g`(·) in [−π, π], respectively;
λmin(Σ`) and λmax(Σ`) are the minimum and maximum eigenvalues of Σ`, respectively.
Moreover, because we assumed g`(λ) > 0, ∀λ ∈ [−π, π], from (3.6.2) we conclude
that the minimum eigenvalue is strictly positive (and hence bounded away from zero)
and Σ` is positive definite (and then invertible). Since Σ` is a p× p real symmetric
positive definite matrix, then

‖Σ`‖op = λmax(Σ`) ≤ Tr(Σ`) = p, ‖Σ−1
` ‖op = 1

λmin(Σ`)
≤ 1

2πg`
,

Tr(Σ−1
` ) ≤ p‖Σ−1

` ‖op ≤
p

2πg`
,
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where ‖A‖op =
√
λmax(A′A), and Tr(A) is the trace of A. In addition,

1
2πg`

= max
λ∈[−π,π]

1
2πg`(λ) = max

λ∈[−π,π]

|1− φ`;1eiλ − · · · − φ`;peiλp|2

1− φ`;1ρ`(1)− · · · − φ`;pρ`(p)

≤ const

1−
∑p
j=1 φ`;jρ`(j)

,

since
|1− φ`;1eiλ − · · · − φ`;peiλp| ≤ 1 +

p∑
j=1
|φ`;j | ≤ const.

Then, from Equation (3.6.1), we can conclude that, uniformly over `,

1
2πg`

≤ C, some C > 0.

The first result below will be exploited to prove convergence in probability of the
denominator for our estimators, while the second part gives the fourth-cumulant
bound which is crucial for Stein-Malliavin arguments. We recall here for convenience
the equalities √

N(2`+ 1)
(
φ̂`;N − φ`

)
= A−1

`;NB`;N ,

where
A`;N = 1

C`N(2`+ 1)X
′
`;NX`;N , Σ` = EA`;N ,

and
B`;N = 1

C`
√
N(2`+ 1)

X ′`;Nε`;N .

Lemma 3.6.1. For any integers ` ≥ 0, N > p, there exists M > 0 such that

E [a`;N (i, j)− E[a`;N (i, j)]]2 ≤ M

N(2`+ 1) , i, j ∈ {1, . . . , p}, (3.6.3)

and
Cum4

[
b̃`;N (i)

]
= 6
N(2`+ 1)

(
C`;Z
C`

s`(i, i)
)2
, (3.6.4)

where b̃`;N (i) =
∑
s`(i, j)b`;N (j) is the i-th element of the p-dimensional vector

B̃`;N = Σ−1
` B`;N , and s`(i, j) are the elements of the inverse matrix Σ−1

` .

The following result shows that replacing A`;N by its expected value Σ` in the
definition of the OLS-like estimator φ̂`;N does not have any asymptotic effect, as
N →∞.

Lemma 3.6.2. For any integers ` ≥ 0 and N > 7 + p, there exists generic positive
constants such that

E
∥∥∥φ̂`;N − φ`∥∥∥2

≤ const

N(2`+ 1) , (3.6.5)

and
E
∥∥∥∥√N(2`+ 1)

(
φ̂`;N − φ`

)
− Σ−1

` B`;N

∥∥∥∥ ≤ const√
N(2`+ 1)

. (3.6.6)
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The following results entail that limN→∞ VN = Imp; actually the two lemmas below
allow to obtain a uniform rate of convergence.

Lemma 3.6.3. If ‖φ`‖ ≤ γ
`β
, β > 1, ` > 0,∥∥∥∥C`;ZC` Σ−1

` − Ip
∥∥∥∥
∞

= O
( 1
`β

)
.

The next result is technical; given the huge amount of work which has taken place
on Legendre polynomials, we expect that the statement could be known already, but
we failed to locate a reference and therefore we report a full proof for the sake of
completeness.

Lemma 3.6.4. Let z = cos θ, θ ∈ (0, π),

lim
L→∞

1
L+ 1

L∑
`=0

(2`+ 1)P 2
` (cos θ) = 2

π sin θ ; (3.6.7)

on the other hand, for θ, θ′ ∈ (0, π), θ 6= θ′, as L→∞,

1
L+ 1

L∑
`=0

(2`+ 1)P`(cos θ)P`(cos θ′) = O

( logL
L

)
. (3.6.8)

We can now start with the proof of these Lemmas.

Proof (Lemma 3.6.1). Let us start by observing that the ij-th element of A`;N ,
denoted by a`;N (i, j), has expected value

E [a`;N (i, j)] = E

 1
N(2`+ 1)C`

n∑
t=p+1

∑̀
m=−`

a`,m(t− i)a`,m(t− j)


= 1
N(2`+ 1)C`

n∑
t=p+1

∑̀
m=−`

E [a`,m(t− i)a`,m(t− j)]

= ρ`(i− j).

Now, we have

E [a`;N (i, j)− E[a`;N (i, j)]]2 =
∑
tt′

∑
mm′

Cov[a`,m(t1 − i)a`,m(t1 − j), a`(t2 − i)a`,m(t2 − j)]
N2(2`+ 1)2C2

`

τ=t1−t2= 1
N(2`+ 1)

N−1∑
τ=1−N

(
1− |τ |

N

)[(
C`(τ)
C`

)2
+ C`(τ + i− j)

C`

C`(τ + j − i)
C`

]
.

Now observe ρ2
` (·) = (C`(·)/C`)2, the squared autocorrelation function of the process,

is nonnegative and summable; that is, there exists ρ∗` ∈ R+ so that
∑+∞
τ=−∞ ρ

2
` (τ) =

ρ∗` <∞, and
∞∑

τ=−∞
|ρ`(τ + i− j)ρ`(τ + j − i)| ≤

+∞∑
τ=−∞

ρ2
` (τ),
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in view of the Cauchy-Schwartz inequality. Thus, it holds that

N−1∑
τ=1−N

(
1− |τ |

N

)[(
C`(τ)
C`

)2
+ C`(τ + i− j)

C`

C`(τ + j − i)
C`

]

≤
N−1∑

τ=1−N
ρ2
` (τ) +

N−1∑
τ=1−N

|ρ`(τ + i− j)ρ`(τ + j − i)|

≤
+∞∑

τ=−∞
ρ2
` (τ) +

+∞∑
τ=−∞

ρ2
` (τ) = 2ρ∗` .

On the other hand,

ρ∗` = 2π
ˆ π

−π
[g`(λ)]2dλ,

and

g`(λ) = 1
2π

1− φ`;1ρ`(1)− · · · − φ`;pρ`(p)
|1− φ`;1eiλ − · · · − φ`;peiλp|2

≤ 1
2π

const(
1− ξ−1

∗
)2p ,

since

1−
p∑
j=1

φ`;jρ`(j) ≤ 1 +
p∑
j=1
|φ`;j | ≤ const,

and
|1− φ`;1eiλ − · · · − φ`;peiλp| ≥ (1− ξ−1

∗ )p > 0,

see also Chapter 2 (Remark 2.2.7). Then, ρ∗` ≤ const, uniformly over `.
In conclusion, uniformly over ` and N ,

E [a`;N (i, j)− E[a`;N (i, j)]]2 ≤ M

N(2`+ 1) , i, j ∈ {1, . . . , p},

M > 0.
Let us now focus on the elements of B̃`;N = Σ−1

` B`;N ; they are given by

b̃`;N (i) =
p∑
j=1

s`(i, j)b`;N (j), i = 1, . . . , p.

These elements can be shown to satisfy the following properties:

(i) E
[
b̃`;N (j)

]
=
∑p
j=1 s`(i, j)E[b`;N (j)] = 0;

(ii) E
[
b̃`;N (i)b̃`;N (j)

]
= s`(i, j)

C`;Z
C`

, since

E[Σ−1
` B`;N (Σ−1

` B`;N )′] = Σ−1
` E[B`;NB′`;N ]Σ−1

` = C`;Z
C`

Σ−1
` ,
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and because

E[b`;N (i)b`;N (j)] = 1
C2
`

1
N(2`+ 1)

∑
tt′

∑
mm′

E[a`,m(t− i)a`,m;Z(t)a`,m(t′ − j)a`,m;Z(t′)]

= 1
C2
`

1
N(2`+ 1)

∑
tt′

∑
m

E
[
a`,m(t− i)a`,m;Z(t)a`,m(t′ − j)a`,m;Z(t′)

]
= 1
C2
`

1
N(2`+ 1)

∑
tm

C`(i− j)C`;Z

= C`(i− j)C`;Z
C2
`

.

(iii) Cum4
[
b̃`;N (i)

]
= 6

N(2`+1)

(
s`(i, i)

C`;Z
C`

)2
.

To compute Cum4
[
b̃`;N (i)

]
we use once again the multilinearity property of cumu-

lants, the real expansion and the diagram formula, so that we obtain:

Cum4[b̃`;N (i)] =
∑

j1j2j3j4

s`(i, j1)s`(i, j2)s`(i, j3)s`(i, j4)Cum[b`;N (j1), b`;N (j2), b`;N (j3), b`;N (j4)],

with Cum[b`;N (j1), b`;N (j2), b`;N (j3), b`;N (j4)] = Cum(j1, j2, j3, j4) given by

Cum(j1, j2, j3, j4) = 1
C4
`

1
N2(2`+ 1)2

×
∑
tm

Cum
[
a`,m(t− j1)a`,m;Z(t), a`,m(t− j2)a`,m;Z(t), a`,m(t− j3)a`,m;Z(t), a`,m(t− j4)a`,m;Z(t)

]
= 1
N(2`+ 1)

[
2C`(j1 − j2)

C`

C`(j3 − j4)
C`

(
C`;Z
C`

)2

+ 2C`(j1 − j3)
C`

C`(j2 − j4)
C`

(
C`;Z
C`

)2

+ 2C`(j1 − j4)
C`

C`(j2 − j3)
C`

(
C`;Z
C`

)2 ]
.

Hence,

Cum4
[
b̃`;N (i)

]
= 6
N(2`+ 1)

(
s`(i, i)

C`;Z
C`

)2
,

as claimed.

Proof (Lemma 3.6.2). First, rewrite√
N(2`+ 1)

(
φ̂`;N − φ`

)
= Σ−1

` B`;N + [A−1
`;N − Σ−1

` ]B`;N .

Since∥∥∥∥√N(2`+ 1)
(
φ̂`;N − φ`

)
− Σ−1

` B`;N

∥∥∥∥ = ‖[A−1
`;N − Σ−1

` ]B`;N‖

= ‖[Ip − Σ−1
` A`;N ]A−1

`;NB`;N‖
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≤ ‖Ip − Σ−1
` A`;N‖op‖A−1

`;N‖op‖B`;N‖,

we have

E‖[A−1
`;N − Σ−1

` ]B`;N‖ ≤
(
E‖A−1

`;N‖
2
op‖B`;N‖2

)1/2 (
E‖Ip − Σ−1

` A`;N‖2op

)1/2

≤
(
E‖A−1

`;N‖
4
op

)1/4 (
E‖B`;N‖4

)1/4 (
E‖Ip − Σ−1

` A`;N‖2op

)1/2
,

where

E‖B`;N‖4 =
p∑
i=1

p∑
j=1

E
[
b2`;N (i)b2`;N (j)

]

≤
p∑
i=1

p∑
j=1

(
E
[
b4`;N (i)

])1/2 (
E
[
b4`;N (j)

])1/2

=
p∑
i=1

p∑
j=1

[
6

N(2`+ 1)

(
C`;Z
C`

)2
+ 3

(
C`;Z
C`

)2
]

< p2
( 24
N(2`+ 1) + 12

)
,

and, from (3.6.3),

E‖Ip − Σ−1
` A`;N‖2op ≤ ‖Σ−1

` ‖
2
opE‖Σ` −A`;N‖2op

≤ const
p∑
i=1

p∑
j=1

E [a`;N (i, j)− E[a`;N (i, j)]]2

≤ const

N(2`+ 1) .

By definition,

‖A−1
`;N‖op = N(2`+ 1) C`

λmin(X ′`;NX`;N ) .

Since X ′`;NX`;N is a real symmetric p× p matrix,

λmin(X ′`;NX`;N ) = min
‖γ‖=1

γ ′X ′`;NX`;Nγ.

X ′`;NX`;N can be seen as the sum of 2`+ 1 independent matrix, i.e.,

X ′`;NX`;N =
∑̀
m=−`

X ′`,m;NX`,m;N ,

where X`,m;N is a N × p matrix, defined by (recalling that n = N + p)

X`,m;N =

a`,m(p) a`,m(p+ 1) · · · a`,m(n− 1)
...

...
...

...
a`,m(1) a`,m(2) · · · a`,m(n− p)

 .
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Then,

λmin(X ′`;NX`;N ) = min
‖γ‖=1

γ ′

 ∑̀
m=−`

X ′`,m;NX`,m;N

γ
= min
‖γ‖=1

∑̀
m=−`

γ ′X ′`,m;NX`,m;Nγ. (3.6.9)

Now recall that Σ` is the p× p matrix of autocorrelations; similarly we define Σ`;N
as the N ×N matrix of autocorrelations. Both are invertible since we assumed that
the spectral density

g`(λ) = 1
2π

1− φ`;1ρ`(1)− · · · − φ`;pρ`(p)
|1− φ`;1eiλ − · · · − φ`;peiλp|2

, λ ∈ [−π, π],

is a continuous positive function.
X`,m;N is a zero-mean Gaussian matrix with E[X`,m;NX

′
`,m;N ] = pC`Σ`;N and

E[X ′`,m;NX`,m;N ] = NC`Σ`, therefore it can be written asX`,m;N = (C`Σ`;N )1/2Z`,m;N ,
where Z`,m;N is a zero-mean Gaussian matrix with independent rows. If Σ`;N = PΛP ′,
where P is an orthogonal matrix of eigenvectors and Λ is the diagonal matrix of
eigenvalues, then

γ ′X ′`,m;NX`,m;Nγ = C`γ
′Z ′`,m;NΣ`;NZ`,m;Nγ

= C`γ
′Z ′`,m;NPΛP ′Z`,m;Nγ

≥ C`λmin(Σ`;N )γ ′Z ′`,m;NPP
′Z`,m;Nγ

= C`λmin(Σ`;N )γ ′Z ′`,m;NZ`,m;Nγ,

where Z ′`,m;NZ`,m;N is a Wishart random matrix with N degrees of freedom. The
same argument applies to all 2`+ 1 components of (3.6.9), so that

λmin(X ′`;NX`;N )
C`

≥ λmin(Σ`;N ) min
‖γ‖=1

∑̀
m=−`

γ ′Z ′`,m;NZ`,m;Nγ

= λmin(Σ`;N ) min
‖γ‖=1

γ ′

 ∑̀
m=−`

Z ′`,m;NZ`,m;N

γ
= λmin(Σ`;N ) min

‖γ‖=1
γ ′Z ′`;NZ`;Nγ

′

= λmin(Σ`;N )λmin(Z ′`;NZ`;N ). (3.6.10)

The summation in (3.6.10) includes 2` + 1 independent Wishart random matrix
each with N degrees of freedom and Σ` as scale matrix, then Z ′`;NZ`;N is a Wishart
random matrix with N(2` + 1) degrees of freedom and Σ` as scale matrix, and
λmin(Z ′`;NZ`;N ) its minimum eigenvalue. Furthermore, this result guarantees the
invertibility of the matrix X ′`;NX`;N .
By the standard inequality on trace and operator norms for matrices, we obtain that

E‖A−1
`;N‖

4
op ≤

N4(2`+ 1)4

λ4
min(Σ`;N )

E‖(Z ′`;NZ`;N )−1‖4op
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≤ N4(2`+ 1)4

λ4
min(Σ`;N )

E
[
Tr((Z ′`;NZ`;N )−1)

]4
≤ N4(2`+ 1)4

(2πg`)4 E
[
Tr((Z ′`;NZ`;N )−1)

]4
.

For N(2`+ 1) > 7 + p the fourth moment of the trace of an inverse Wishart matrix
is given in [47]:

u4(η)E
[
Tr((Z ′`;NZ`;N )−1)

]4
= 48(5η − 3)Tr(Σ−4

` )

+ 128η(η − 2)Tr(Σ−3
` )Tr(Σ−1

` )
+ 12(2η2 − 5η + 9)(Tr(Σ−2

` ))2

+ 12(4η3 − 12η2 + 3η + 3)Tr(Σ−2
` )(Tr(Σ−1

` ))2

+ (η + 1)(2η − 3)(4η2 − 12η + 1)(Tr(Σ−1
` ))4,

where η = N(2`+1)
2 − p+1

2 , and

u4(η) = 24η(η − 1)(η − 2)(η − 3)(2η − 1)(η + 1)(2η + 1)(2η + 3).

If λ`;1, . . . , λ`;p are the eigenvalues of Σ`, we have

0 < Tr(Σ−k` ) =
p∑
j=1

(
1
λ`;j

)k
≤

 p∑
j=1

1
λ`;j

k = (Tr(Σ−1
` ))k,

k ≥ 1. Then, for 2η > 7 + p,

u4(η)E
[
Tr((Z ′`;NZ`;N )−1)

]4
≤ (Tr(Σ−1

` ))4(8η4 + 20η3 + 10η2 − 5η − 3)

= (Tr(Σ−1
` ))4(2η − 1)(η + 1)(2η + 1)(2η + 3),

and

E
[
Tr((Z ′`;NZ`;N )−1)

]4
≤

(Tr(Σ−1
` ))4

24η(η − 1)(η − 2)(η − 3)

= (Tr(Σ−1
` ))4∏4

k=1(N(2`+ 1)− p+ 1− 2k))
.

In addition,

N4(2`+ 1)4∏4
k=1 (N(2`+ 1)− p+ 1− 2k)

= 1∏4
k=1

(
1− p−1+2k

N(2`+1)

)
≤ 1(

1− p+7
N(2`+1)

)4

≤ 1(
1− p+7

p+8

)4 ,
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for every ` ≥ 0 and N > 7 + p. Thus, (3.6.6) holds.
The second part of this Lemma follows easily, indeed

E
∥∥∥φ̂`;N − φ`∥∥∥2

= 1
N(2`+ 1)E

∥∥∥∥√N(2`+ 1)(φ̂`;N − φ`)
∥∥∥∥2

= 1
N(2`+ 1)E

∥∥∥A−1
`;NB`;N

∥∥∥2

≤ 1
N(2`+ 1)

(
E
∥∥∥A−1

`;N

∥∥∥4
)1/2 (

E ‖B`;N‖4
)1/2

≤ const

N(2`+ 1) ,

in view of the bounds that we just established on the fourth-moments of the norms
of A−1

`,N and B`,N .

Proof (Lemma 3.6.3). We first need to prove that lim`→∞Σ` = Ip, where we recall
that Σ` is the matrix of autocorrelations ρ`(i− j). For i = j, ρ`(i− j) = 1, for all `;
on the other hand, for i 6= j,

ρ`(i− j) = φ`;1ρ`(i− j − 1) + · · ·+ φ`;pρ`(i− j − p),

and

|ρ`(i− j)| ≤
p∑

k=1
|φ`;k| → 0, `→∞.

For ` > 0,∥∥∥∥C`;ZC` Σ−1
` − Ip

∥∥∥∥
∞
≤
∥∥∥∥∥Ip − C`

C`;Z
Σ`

∥∥∥∥∥
∞

∥∥∥∥C`;ZC` Σ−1
`

∥∥∥∥
∞
≤ const

∣∣∣∣C`;ZC`
∣∣∣∣
∥∥∥∥∥Ip − C`

C`;Z
Σ`

∥∥∥∥∥
∞
.

Moreover, since
|ρ`(i− j)| ≤ p‖φ`‖ ≤

pγ

`β
, i 6= j,

and ∣∣∣∣∣1− C`
C`;Z

∣∣∣∣∣ =
∣∣∣∣∣ C`C`;Z

∣∣∣∣∣
∣∣∣∣∣∣
p∑
j=1

φ`;jρ`(j)

∣∣∣∣∣∣ ≤
∣∣∣∣∣ C`C`;Z

∣∣∣∣∣ p‖φ`‖ ≤
∣∣∣∣∣ C`C`;Z

∣∣∣∣∣ pγ`β ,
we have ∥∥∥∥C`;ZC` Σ−1

` − Ip
∥∥∥∥
∞
≤ const

`β
,

as claimed.

The last proof is for the technical Lemma on summation of squared Legendre
polynomials.

Proof (Lemma 3.6.4). For ` ≥ 1, by Hilb’s asymptotics (see [67, 75]), it holds that

P`(cos θ) =
√

2
π` sin θ sin (`θ + α) +O

(
`−3/2

)
, 0 < θ < π, (3.6.11)
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with α = θ
2 + π

4 . Then,

(2`+ 1)P 2
` (cos θ) = (2`+ 1)

(√
2

π` sin θ sin (`θ + α) +O
(
`−3/2

))2

= 4
π sin θ sin2 (`θ + α) +O

(
`−1

)
, 0 < θ < π.

In view of the standard identities

sin x = eix − e−ix

2i ,

and
n−1∑
k=0

eixk = 1− eixn

1− eix , x 6= 0,

we have
L∑
`=1

sin2(`θ + α) =
L∑
`=1

(
ei(`θ+α) − e−i(`θ+α)

2i

)2

= −1
4

L∑
`=1

[
ei2(`θ+α) + e−i2(`θ+α) − 2

]
= −e

i2(θ+α)

4

(
1− ei2θL

1− ei2θ

)
− e−i2(θ+α)

4

(
1− e−i2θL

1− e−i2θ

)
+ 1

2(L+ 1),

hence,

lim
L→∞

1
L+ 1

L∑
`=1

sin2(`θ + α) = 1
2 .

Also, it holds that if limk→∞ ak = A, |A| <∞, then limk→∞
1
n

∑n
k=1 ak = A. As a

consequence,

lim
L→∞

1
L+ 1

L∑
`=0

(2`+ 1)P 2
` (cos θ) = 2

π sin θ , θ ∈ (0, π).

Likewise, for θ, θ′ ∈ (0, π), θ 6= θ′,

(2`+ 1)P`(cos θ)P`(cos θ′) = 4
π
√

sin θ sin θ′
sin (`θ + α) sin

(
`θ′ + α′

)
+O

(
`−1

)
,

and
L∑
`=1

sin(`θ + α) sin(`θ′ + α′) =
L∑
`=1

(
ei(`θ+α) − e−i(`θ+α)

2i

)(
ei(`θ

′+α′) − e−i(`θ′+α′)

2i

)

=− ei(θ+θ
′+α+α′)

4

(
1− ei(θ+θ′)L

1− ei(θ+θ′)

)
− e−i(θ+θ

′+α+α′)

4

(
1− e−i(θ+θ′)L

1− e−i(θ+θ′)

)

+ei(θ−θ
′+α−α′)

4

(
1− ei(θ−θ′)L

1− ei(θ−θ′)

)
+ e−i(θ−θ

′+α−α′)

4

(
1− e−i(θ−θ′)L

1− e−i(θ−θ′)

)
,
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hence,
1

L+ 1

L∑
`=1

sin(`θ + α) sin(`θ′ + α′) = O
( 1
L

)
.

In addition, since
∑L
`=1 `

−1 = O(logL), we can then conclude that

1
L+ 1

L∑
`=0

(2`+ 1)P`(cos θ)P`(cos θ′) = O
( logL

L

)
, θ, θ′ ∈ (0, π), θ 6= θ′.

as L→∞.

Remark 3.6.5. Note that (3.6.8) does not converge pointwise if θ or θ′ = 0; for
instance, for θ = θ′ = 0 we have 1

L+1
∑L
`=0(2`+ 1) = L+ 1, whereas for θ 6= 0, θ′ = 0

(3.6.4) oscillates among given constants.
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Chapter 4

LASSO for Spherical Functional
Autoregressions1

4.1 Introduction
This chapter is concerned with the same class of space-time fields introduced in
Chapter 2, i.e., functional autoregressive processes defined over L2(S2) (see also [10]
and the references therein). More precisely, we recall that the SPHAR(p) equation
is given by

T (x, t) =
p∑
j=1

(ΦjT (·, t− j)) (x) + Z (x, t) , (x, t) ∈ S2 × Z (4.1.1)

where, for j = 1, . . . , p, the autoregressive kernel operator Φj : L2(S2)→ L2(S2) is
defined as

(Φjf) (x) =
ˆ
S2
kj (〈x, y〉) f (y) dy, f ∈ L2(S2),

and, as noted earlier, kj : [−1, 1] → R is the corresponding autoregressive kernel,
that we assume to be continuous. Furthermore, each kj has an harmonic expansion

kj (〈x, y〉) =
∑
`≥0

φ`;j
2`+ 1

4π P` (〈x, y〉) , (4.1.2)

where P` : [−1, 1] → R denotes as usual the Legendre polynomial of order `, and,
for j = 1, . . . , p, the coefficients {φ`;j : ` ≥ 0} are the eigenvalues of the operator
Φj . Once again, as a standard consequence of the so-called duplication property for
spherical harmonics (see Section 1.2), we can write

a`,m (t) =
p∑
j=1

φ`;ja`,m (t− j) + a`,m;Z (t) . (4.1.3)

In the previous chapter (see also [18]), estimators for the kernels {kj : j = 1, . . . , p}
have been defined according to a functional L2-minimization criterion, exploiting

1This chapter is partially based on the preprint LASSO for Spherical Functional Autoregressions
[17], written jointly with Claudio Durastanti and Anna Vidotto, submitted for publication.
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their spectral decomposition (4.1.2); consistency, quantitative central limit theorem,
and weak convergence results have then been established under some additional
regularity conditions.
Here, we approach the estimation of the autoregressive kernels under a sparsity
assumption, namely, for any j = 1, . . . , p, we assume that only a few of the compo-
nents of kj in (4.1.2) are nonzero (see Definition 4.1.1 below). It is now well-known
that assuming sparsity conditions can lead to considerable advantages in estimation
problems (see, for example, [30]). Indeed, on one hand, the proper identification
of the null components allows one to reduce the number of predictor variables,
preserving accuracy; on the other hand, sparsity enhances computational efficiency.
LASSO - or `1-regularized - regression, introduced in the statistical literature by [68],
is among the most popular penalization techniques to estimate sparse models. As
well known, it corrects the L2-loss for sparse models by adding a convex penalty term.
In the framework of independent and identically distributed (i.i.d.) observations,
LASSO has been proved to be extremely efficient both from the point of view
of theoretical properties and in terms of applications (see [29, 73] and references
therein). The connections between LASSO, ridge regression, best subset selection
and other `q-based penalization methods have been widely investigated; further links
between LASSO and other nonparametric statistical techniques, such as soft and
hard thresholding, have been widely investigated, for instance, in [13, 30].
Applications of LASSO in the framework of time series and stochastic processes
represent a much more recent development. A pioneering contribution in this area has
been given in [7], where the authors explore the properties of `1-regularized estimators
in the settings of stochastic regression with serially correlated errors and vector
autoregressive (VAR) models (see also [21, 66] for related ideas). Their results can
be seen as a successful extension of the standard LASSO technique to the framework
of non-i.i.d. observations. More specifically, in [7], under sparsity constraints, `1-
regularized estimators have been investigated by introducing a measure of stability
for stationary processes, a very powerful tool to study the correlation structure
of multivariate processes, and crucial to settle some useful deviation bounds for
dependent data. Further details on the stability of autoregressions can be found,
among others, in [12, 41] as well as in [10] for the functional case (see also Section
4.2). In turn, these deviation bounds are instrumental to establish concentration
properties of the estimators, and so-called oracle inequalities.
The aim of this chapter is to define and study LASSO-type estimators for spherical
autoregressive kernels under sparsity assumptions. In line with [18], our approach
does not require any specific functional form for the kernel kj ; in this sense, the
estimation procedure can be viewed as fully nonparametric, see also [72]. It is
important to stress that, given the nonparametric nature of the model (4.1.1), we are
dealing with a functional penalized regression problem, hence stepping away from
the framework of VAR(p) processes, where estimators assume a vectorial form. More
specifically, our oracle inequalities will involve functions rather than scalar or vectorial
parameters (see Section 4.1.1). Exploiting the harmonic expansion for the spherical
autoregressions (4.1.1) and the isotropy assumption on {kj : j = 1, . . . , p} in (4.1.2),
together with an extension of the concept of stability measure introduced in [7], we will
be able to establish concentration properties in functional norms for the autoregressive
kernels (see Section 4.3). Moreover, the sparsity enforcement properties of LASSO
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procedures will allow to avoid overfitting and to select asymptotically the most
relevant multipole components in the functional autoregressions.

4.1.1 Background and Main Results

Let us preliminarily introduce some standard notation, which will be instrumental
to state our main findings. For real valued sequences {an}n∈N , {bn}n∈N, we write
an � bn if there exists an absolute constant c, which does not depend on the model
parameters, such that an ≥ c bn, for all n ∈ N. For a vector v ∈ Rd, ‖v‖q denotes
the `q-norm of v,

‖v‖q =
(

d∑
i=1
|vi|q

) 1
q

; ‖v‖0 =
d∑
i=1

1{vi 6=0}; ‖v‖∞ = max
i=1,...,d

|vi| ,

for 0 < q <∞, q = 0 and q =∞ respectively. Unless stated otherwise, for the sake of
the simplicity, ‖·‖ denotes the `2-norm of v. Let f : [−1, 1]→ Rp, f ∈ Lq ([−1, 1] , dz),
where dz is the Lebesgue measure over [−1, 1]. Then, for 1 ≤ q <∞, the Lq-norm
of f is given by

‖f‖Lq =
(ˆ 1

−1
‖f (z)‖q ρ (dz)

) 1
q

.

Analogously, the L∞-norm of f is given by ‖f‖L∞ = supz∈[−1,1] ‖f (z)‖. Finally,
recall that the Hilbert-Schmidt and the trace class norms of a compact self-adjoint
operator T : H→ H, where H is a separable Hilbert space, are given respectively by

‖T ‖HS =
∞∑
i=1
|λi|2 ; ‖T ‖TR =

∞∑
i=1
|λi| ,

where {λi}i∈N are the eigenvalues of T (see, for example, [32]).
We provide now the definition of sparsity index, which can be understood as a more
rigorous characterization of sparsity.

Definition 4.1.1 (Sparsity index). For any ` ≥ 0, φ` = (φ`;1, . . . , φ`;p) is a q`-sparse
vector if

‖φ`‖0 = q`,

where q` is the `-th sparsity index, which satisfies 1 ≤ q` ≤ p. We call {q` : ` ≥ 0}
the sparsity set.

Remark 4.1.2. Following [10, 18], to ensure identifiability we assume that there
exists at least one ` ≥ 0 such that φ`;p 6= 0, so that P (ΦpT (·, t) 6= 0) > 0, for
all t ∈ Z. As a consequence, for some ` ≥ 0, we can have φ` = 0 and hence
‖φ`‖0 = q` = 0; however, q = max`≥0 q` ≥ 1.

Set, as usual, the sequence of polynomials φ` : C→ C, ` ≥ 0, so that

φ`(z) = 1− φ`;1z − · · · − φ`;pzp. (4.1.4)

In line with the previous chapter, we must introduce some conditions on the model,
essential to achieve our results.
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Condition 4.1.3 (Identifiability). Let
{
Z (x, t) , (x, t) ∈ S2 × Z

}
be the Gaussian

spherical white noise used in (4.1.1). Then it holds that
ˆ
S2×S2

ΓZ (x, y) f (x) f (y) dx dy > 0,

for any f ∈ L2(S2) such that f (·) 6= 0. Equivalently C`;Z > 0, for all ` ≥ 0.

Condition 4.1.4 (Stationarity). The sequence of polynomials (4.1.4) is such that

|z| < 1 + δ ⇒ φ`(z) 6= 0,

for some δ > 0. More explicitly, there are no roots in a δ-enlargement of the unit
disk, for all ` ≥ 0.

Condition 4.1.5 (Smoothness). For all j = 1, . . . , p, we have that

‖Φj‖TR =
∞∑
`=0

(2`+ 1)|φ`;j | <∞, (4.1.5)

that is, Φj is a nuclear operator, see again [32].

From now on, for any ` ≥ 0, we assume that we are able to observe the harmonic
coefficients {a`,m(t) : m = −`, . . . , `} over a finite set of times {1, . . . , n}. The vector
of functions

k := (k1, . . . , kp)

contains all the autoregressive kernels described above. We will focus on the following
penalized minimization problem:

k̂lasso
N = argmin

k∈PpN

n∑
t=p+1

∥∥∥∥∥∥T (·, t)−
p∑
j=1

ΦjT (·, t− j)

∥∥∥∥∥∥
2

L2(S2)

+ λ
p∑
j=1
‖Φj‖TR, (4.1.6)

where N = n− p can be read as the effective number of observations, and λ ∈ R+ is
the penalty parameter. As in the previous chapter, the space PpN is the Cartesian
product of p copies of

span
{2`+ 1

4π P` (·) : ` = 0, . . . , LN − 1
}
, (4.1.7)

where the integer LN > 0 is the truncation level, which corresponds to the frequency
of the highest component in (4.1.2) estimated by (4.1.6), see Section 4.2.1 for a
detailed discussion. Let us furthermore define

kj;N (〈x, y〉) :=
LN−1∑
`=0

φ`;j
2`+ 1

4π P`(〈x, y〉) (4.1.8)

and accordingly kN := (k1;N , . . . , kp;N ).

Our main result is extensively stated in Theorem 4.3.12 and can be compactly
formulated as follows.
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Theorem 4.1.6. Consider the estimation problem (4.1.6), assume that Conditions
4.1.3 and 4.1.4 hold, and suppose that

N � b1 q log (pLN ) ,

where q = max`≥0 q`. Then, for any penalty parameter λ = λN ≥ b2
√

log(pLN )
N , the

solution k̂lasso
N of (4.1.6) satisfies

P

∥∥∥k̂lasso
N − k

∥∥∥2

L2
≤ 18
π2 λ

2
N

LN−1∑
`=0

q`
α2
`

(2`+ 1) +
∥∥∥k − kN∥∥∥2

L2

 ≥ 1− c1e
−c2 log(pLN ),

where the sequence {α` : ` = 0, . . . , LN − 1} is defined in (4.3.12), and c1, c2 > 0 are
absolute constants. Moreover, under the additional Condition 4.1.5, it holds that

P

∥∥∥k̂lasso
N − k

∥∥∥
L∞
≤ 3
π
λN

LN−1∑
`=0

√
q`
α`

(2`+ 1) +
∥∥∥k − kN∥∥∥

L∞

 ≥ 1− c1e
−c2 log(pLN ).

Remark 4.1.7. The constants b1 and b2 depend on the model. In particular,
b1 = max

{
ω2, 1

}
and b2 = 4F , where F , ω > 0 are tightly connected to the stability

measure introduced in Section 4.3.1. The reader is referred to Section 4.3.2 for
further details and comments.
Our findings provide upper bounds for the L2- and the L∞-distances between the
LASSO-type estimator k̂lasso

N and the true k. These upper bounds consist of the sum
of two terms. The first summand represents the error due to the approximation
of the first LN components of k with k̂lasso

N . The second one arises because k̂lasso
N

provides an estimation of k truncated at the multipole LN . In this sense, we can
draw an analogy with standard nonparametric statistics and refer to them as the
stochastic and the bias errors, respectively (see [72]). The upper bounds are non-
asymptotic and they hold with high-probability, in the sense that, for a fixed N
sufficiently large, the probability on the left side is arbitrarily close to 1. Of course,
with an appropriate choice of LN , both the upper bounds converge to 0 and their
probabilities converge to 1, as N →∞; as a consequence, our result can be read in
terms of asymptotic consistency.

4.1.2 Plan of the Chapter

The chapter is organized as follows. In Section 4.2, we present the LASSO estimators
for spherical autoregressive kernels under sparsity assumptions. Section 4.3 contains
the main results of this work, that is, how the classical LASSO-scheme fits in our
setting, using the concept of stability measure, as well as our oracle inequalities. In
Section 4.4 we briefly show the performance of the LASSO estimators under sparsity
assumptions. Finally, Section 4.5 collects the proofs.

4.2 LASSO Estimation on the Sphere
Here we present `1-regularized estimators for spherical autoregressive kernels under
sparsity assumptions. More specifically, merging the techniques based on the sta-
bility measure presented in [7] with the properties of Gaussian isotropic stationary
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SPHAR(p) processes enables the construction of functional estimators for the kernels
{kj : j = 1, . . . , p}.

4.2.1 The Construction of the Estimator

As seen in Section 4.1, the spectral decomposition on the sphere allows to reduce the
functional penalized minimization problem to the equivalent `1-penalized problems
in the space of the harmonic coefficients.

Definition 4.2.1 (LASSO Estimator). The LASSO estimator for the vector of
kernels k is defined by

k̂lasso
N := argmin

k∈PpN

n∑
t=p+1

∥∥∥∥∥∥T (·, t)−
p∑
j=1

ΦjT (·, t− j)

∥∥∥∥∥∥
2

L2(S2)

+ λ
p∑
j=1
‖Φj‖TR. (4.2.1)

Arguing as in the previous chapter leads to

Z (x, t) = T (x, t)−
p∑
j=1

(ΦjT (·, t− j)) (x)

=
∞∑
`=0

∑̀
m=−`

a`,m (t)−
p∑
j=1

φ`;ja`,m (t− j)

Y`,m(x),

where {Y`,m(·), ` ≥ 0, m = −`, . . . , `} is a standard basis of real spherical harmonics
(see Remark 1.2.2) and, for fixed (`,m), the random coefficients {a`,m;Z(t), t ∈ Z}
associated with the Gaussian spherical white noise can be seen as the residuals of
the one-dimensional autoregressive process {a`,m(t), t ∈ Z}.
For any ` ≥ 0, the p-dimensional vector of regressors is given by

φ` = (φ`;1, . . . , φ`;p)′ .

As a consequence,

n∑
t=p+1

∥∥∥∥∥∥T (·, t)−
p∑
j=1

ΦjT (·, t− j)

∥∥∥∥∥∥
2

L2(S2)

=
n∑

t=p+1

∞∑
`=0

∑̀
m=−`

∣∣∣∣∣∣a`,m (t)−
p∑
j=1

φ`;ja`,m (t− j)

∣∣∣∣∣∣
2

.

Let us fix a truncation level LN , thus depending on the number of observations N .
We can also define the truncated residual sum of squares as

S (φ0, . . . ,φL−1) =
n∑

t=p+1

LN−1∑
`=0

∑̀
m=−`

∣∣∣∣∣∣a`,m (t)−
p∑
j=1

φ`;ja`,m (t− j)

∣∣∣∣∣∣
2

=
LN−1∑
`=0

S`(φ`), (4.2.2)

where

S`(φ`) =
n∑

t=p+1

∑̀
m=−`

∣∣∣∣∣∣a`,m (t)−
p∑
j=1

φ`;ja`,m (t− j)

∣∣∣∣∣∣
2

.
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Using (4.2.2), we obtain that

k̂lasso
N = argmin

k∈PpN
S (φ0, . . . ,φLN−1) + λ

p∑
j=1
‖Φj‖TR

= argmin
k∈PpN

LN−1∑
`=0

[S`(φ`) + λ (2`+ 1) ‖φ`‖1]

=
LN−1∑
`=0

φ̂lasso
`;N

2`+ 1
4π P`,

where PpN is given by (4.1.7), and

φ̂lasso
`;N = argmin

φ`∈Rp
S`(φ`) + λ(2`+ 1) ‖φ`‖1

= argmin
φ`∈Rp

1
N(2`+ 1)S`(φ`) + λ

N
‖φ`‖1 . (4.2.3)

Remark 4.2.2. Note that the penalization procedure (4.2.1) preserves isotropy. This
is a consequence of the fact that we are considering a block-sparsity model; indeed,
given the structure of the predictor ΦjT (·, t− j), where all the a`· share the same φ`;j,
the procedure will automatically select only the relevant multipoles `. As a result, a
multipole is either removed entirely or not removed at all from the j-th component
of k̂lasso

N . The reader is referred for further discussions to [14], where it is shown
that not all the `1-penalized problems have solutions which are isotropic, and to [38]
for sparsity enforcing procedures in the case of isotropic spherical random fields.

An alternative form for the `1-penalized problem given by (4.2.3) can be introduced
as follows. First, we define the N (2`+ 1)-dimensional vectors

Y`;N = (a`,−` (n) , . . . , a`,−` (p+ 1) , . . . , a`,` (p+ 1))′ ,
Y`;N (h) = (a`,−` (n− h) , . . . , a`,−` (p+ 1− h) , . . . , a`,` (p+ 1− h))′ , h = 1, . . . , p,
E`;N = (a`,−`;Z (n) , . . . , a`,−`;Z (p+ 1) , . . . a`,`;Z(p+ 1)) ,

where we recall that N = n− p. We can thus define the (N (2`+ 1)× p) matrix

X`;N = [Y`;N (1) , . . . , Y`;N (p)] (4.2.4)

Note that the LASSO problem (4.2.1) reduces to

LN−1∑
`=0

argmin
φ`∈Rp

[ 1
N(2`+ 1) ‖Y`;N −X`;Nφ`‖22 + λ

N
‖φ`‖1

] 2`+ 1
4π P`.

Fixed ` = 0, . . . , LN −1, we define the covariance matrix Γ`, namely, the p×p matrix
with generic ij-th element C` (i− j). We can use (4.2.4) to define its unbiased
estimator

Γ̂`;N =
X ′`;NX`;N

N (2`+ 1) .

Let us now consider the product X ′`;NE`;N/N(2`+ 1). Observe that E`;N is related
to the error random field Z, so that we can read this random object as the process
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obtained from the product of the stochastic data matrix X`;N and the noise vector.
Indeed, it represents the so-called empirical process (see [13] and the references
therein), associated with the multipole `. Furthermore, observe that the `-th
empirical process corresponds to the following sum

X ′`;NE`;N

N (2`+ 1) =
X ′`;NY`;N

N (2`+ 1) −
X ′`;NX`;N

N (2`+ 1)φ` = γ̂`;N − Γ̂`;Nφ` , (4.2.5)

where

γ̂`;N =
X ′`;NY`;N

N (2`+ 1) .

Establishing an upper bound for the empirical processes will be crucial for the proof
of the consistency property for the LASSO estimators.

4.3 Main Results

In this section, we present the main results of this chapter, which consist of properties
for the LASSO-type estimator k given in (4.2.1). First of all, in Section 4.3.1 we
introduce the concept of stability measure, a powerful tool, firstly proposed in the
LASSO framework by [7], to obtain some bounds on the concentration of the sample
covariances and the empirical processes around their expected values. Then, in
Section 4.3.2 we will follow the standard scheme of LASSO-techniques, see [30, 13],
to establish, as it is usually done, a basic inequality, a deviation condition and
a compatibility condition. Finally, in Section 4.3.3 we present our main theorem,
showing the so-called oracle inequalities for k̂lasso

N .

4.3.1 Stability Measure on the Sphere and Deviation Bounds

Here, we discuss the stability measure for SPHAR(p) random fields. Intuitively, a
stability measure quantifies the correlation of the components of the process. Several
proposals aiming to represent the stability of a given process have been suggested in
the literature over the years (see, for example [77, 65, 35]), mostly involving set of
mixing conditions in order to assess for how long in time the dependence between
the components is effective. The stability measure considered here is in line with
the one defined by [7].
First of all, recall that {a`,m (t) , t ∈ Z} can be read as a real-valued autoregressive
process of order p. Under standard stationarity assumptions (see [12, page 123]), we
can define its spectral density as

f`(ν) = 1
2π

∞∑
τ=−∞

C` (τ) e−iντ = 1
2π

C`;Z

|φ`(e−iν)|2
, ν ∈ [−π, π] ,

which is bounded and continuous (see also [18]). Upper and lower extrema of the
spectral density over the unit circle are hence given by

M(f`) := max
ν∈[−π,π]

f`(ν), m(f`) := min
ν∈[−π,π]

f`(ν).



4.3 Main Results 77

In what follows, we adopt M(f`) as a measure of the stability of the process
{a`,m (t) , t ∈ Z}. Generalizing [7], we can consider this as a band limited stability
measure, in the sense that it refers only to the subprocesses belonging to the multipole
`. A global stability measure can be obtained by considering jointly all the multipoles
` ≥ 0 via the following definition

M =M (T ) := max
`≥0
M(f`);

whereas we can refer toMN := max`<LNM(f`) as the observed stability measure.
Let us now define the p-dimensional process

ã`,m (t) = (a`,m (t) , . . . , a`,m (t− p+ 1))′ ,

with spectral density and corresponding stability measure

f̃` (ν) = 1
2π

∞∑
τ=−∞

Γ` (τ) e−iτν , M
(
f̃`
)

:= max
ν∈[−π,π]

Λmax(f̃`(ν)),

where
Γ` (τ) = E

[
ã`,m (t+ τ) ã′`,m (t)

]
,

and Γ` = Γ` (0). We can therefore construct r-dimensional subprocesses of {ã`,m (t) : t ∈ Z}
as follows. We fix a r-dimensional index J = (j1, . . . , jr), so that J ∈ {1, . . . , p}r,
and j1 < . . . < jr. Then, we define

ãJ`,m (t) =
(
(ã`,m (t))j1 , . . . , (ã`,m (t))jr

)′
,

where (ã`,m (t))i is the i-th component of {ã`,m (t) : t ∈ Z}. This subprocess has
spectral density f̃J` (ν). We can finally introduce the associated band-limited, global
and observed stability measures, respectively

M
(
f̃`, r

)
= max

J⊂{1,...,p},|J |≤r
M
(
f̃J`

)
,

M̃(r) = max
`≥0
M
(
f̃`, r

)
,

M̃N (r) = max
`<LN

M
(
f̃`, r

)
.

Notice that M
(
f̃`
)

= M
(
f̃`, p

)
, while, for the sake of completeness, we define

M
(
f̃`, r

)
=M(f̃`), for all r > p. Moreover, it can be shown that

M
(
f̃`, 1

)
≤M

(
f̃`, 2

)
≤ · · · ≤ M

(
f̃`, p

)
=M

(
f̃`
)
.

The following quantities are also well-defined

µmin;` := min
z∈C:|z|=1

|φ`(z)|2, µmax;` := max
z∈C:|z|=1

|φ`(z)|2, (4.3.1)

for every ` ≥ 0.
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Remark 4.3.1. Note that,

µmax;` := max
z∈C:|z|=1

∣∣∣∣∣∣1−
p∑
j=1

φ`;jz
j

∣∣∣∣∣∣
2

≤

1 +
p∑
j=1
|φ`;j |

2

≤ const ,

µmin;` := min
z∈C:|z|=1

∣∣∣∣∣1−
p∑

u=1
φ`;jz

j

∣∣∣∣∣
2

≥ (1− ξ−1
∗ )2p > 0 ,

see also Chapter 2 (Remark 2.2.7).

We apply now the idea of stability measure to establish some relevant deviation
bounds on the covariance estimators and the empirical processes, which will be pivotal
to analyse our regression problem. Note that, {a`,m (t) : t ∈ Z}, m = −`, . . . , `, can
be seen as a tool to provide an alternative notation for the empirical process (4.2.5).
Indeed the h-th component of X ′`;NE`;N/N(2`+ 1) is given by

Y`;N (h)′E`;N
N (2`+ 1) = 1

N (2`+ 1)
∑̀
m=−`

n∑
t=p+1

a`,m (t− h) a`,m;Z (t) . (4.3.2)

Proposition 4.3.2 (Deviation bounds). There exists a constant c > 0 such that for
any r-sparse vectors u, v ∈ Rp with ‖u‖ , ‖v‖ ≤ 1, r ≥ 1 and any η ≥ 0, it holds that

P
(∣∣∣v′ (Γ̂`;N − Γ`

)
v
∣∣∣ > 2πM

(
f̃`, r

)
η
)
≤ 2e−cN(2`+1) min{η2,η}, (4.3.3)

P
(∣∣∣u′ (Γ̂`;N − Γ`

)
v
∣∣∣ > 6πM

(
f̃`, 2r

)
η
)
≤ 6e−cN(2`+1) min{η2,η}. (4.3.4)

In particular, for any i, j ∈ {1, . . . , p}, it holds that

P
(∣∣∣∣(Γ̂`;N − Γ`

)
ij

∣∣∣∣ > 6πM(f̃`, 2)η
)
≤ 6e−cN(2`+1) min{η2,η} . (4.3.5)

Moreover, for all 1 ≤ h ≤ p, it holds that

P
(∣∣∣∣∣Y

′
`;N (h)E`;N
N (2`+ 1)

∣∣∣∣∣ > 2π C`;Z

(
1 + 1 + µmax;`

µmin;`

)
η

)
≤ 6e−cN(2`+1) min{η2,η}, (4.3.6)

where µmax;` and µmin;` are defined by (4.3.1).

Remark 4.3.3. Note that the deviation bounds can be also stated in terms of the
global or observed stability measure M̃(r) or M̃N (r).

The analogous result presented in [7] is very general, since it deals with stationary
Gaussian random processes on Rd, while here we focus on deviation bounds for our
specific empirical covariance matrices and empirical processes. The main technical
difference between our results and the ones in [7] is that, in our framework, we use
observations from a group of 2`+ 1 stationary processes, namely, {a`,m(t) : t ∈ Z},
m = −`, . . . , `, to estimate the same covariance matrix Γ`, exploiting the isotropy of
the field.
Similarly to [7], (4.3.3)-(4.3.6) quantify how the underlying estimators concentrate
around their expected values. In particular, (4.3.3) will be used to verify the
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compatibility condition (see Proposition 4.3.6), while (4.3.6) will be used to prove
the deviation condition (see Proposition 4.3.8). In the i.i.d. case, bounds on the
empirical process can be easily established, since the data matrix is deterministic
and the randomness comes only from the noise vector. In our case, analogously
to [7], the `-th empirical process is the product of a dependent noise vector and a
stochastic data matrix. Therefore, proving consistency requires a bound on both
these two random objects.

4.3.2 Bounds for LASSO Techniques

We are now in the position to present the classical path of LASSO in our setting.
The very first result concerns the so-called basic inequality, an elementary yet essential
result, which does not require any condition or assumption, except the existence of
a linear underlying model, and it is simply based on the definition of the LASSO
estimator.

Proposition 4.3.4 (Basic Inequality). Consider the estimation problem (4.2.1).
For any ` = 0, . . . , LN − 1, set v` := φ̂lasso

`;N −φ`. The following basic inequality holds

v′`Γ̂`;Nv` ≤
2v′`X ′`;NE`;N
N(2`+ 1) + λ

N

[
‖φ`‖1 − ‖φ` + v`‖1

]
(4.3.7)

This simple result implies that the prediction error v′`Γ̂`;Nv` is bounded by the sum
of two factors. The first one is random and it depends on the empirical process
X ′`;NE`;N/N (2`+ 1). The second one is deterministic and its value depends on the
penalty parameter λ, the number of observations N , and the chosen linear model
itself.
The second step consists in defining an event SN such that the fluctuations of the
random factors

2v′`X ′`;NE`;N
N(2`+ 1) , ` = 0, . . . , LN − 1 ,

when conditioning to SN , are all controlled by the same deterministic quantity.
Moreover, we need to prove that this event has a high probability, implying that
a bound on the prediction errors can be obtained in most cases. The event SN is
defined as follows.

Definition 4.3.5. In the setting previously described, let

SN =
LN−1⋂
`=0

∥∥∥γ̂`;N − Γ̂`;Nφ`
∥∥∥
∞
≤ FN

√
log pLN
N

 , (4.3.8)

where FN is a deterministic function depending only on the parameters (φ0, . . . ,φLN−1)
ad noise variances (C0;Z , . . . , CLN−1;Z). The deviation condition is said to hold if
the event SN happens.

The following theorem shows that, for an appropriate choice of FN and LN , the
event SN has high probability to occur.
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Proposition 4.3.6 (Deviation condition). Consider the regression problem (4.1.1)
and the proposed estimator k̂lasso

N described in (4.2.1). Assume that Conditions 4.1.3
and 4.1.4 hold. There exist some absolute constants c0, c1, c2 > 0 such that, if we
define

F (φ`, C`;Z) = c0

[
C`;Z

(
1 + 1 + µmax;`

µmin;`

)]
, FN = max

`<LN
F (φ`, C`;Z) ,

and if N � log pLN , then

P

LN−1⋂
`=0

∥∥∥γ̂`;N − Γ̂`;Nφ`
∥∥∥
∞
≤ FN

√
log pLN
N

 ≥ 1− c1e
−c2 log(pLN ) .

Remark 4.3.7. Observe that:

(i) the results presented in Proposition 4.3.6 also hold for a different choice of
FN , that is,

FN = c0

[(
max
`<LN

C`;Z

)(
1 + 1 + max`<LN µmax;`

min`<LN µmin;`

)]
,

which corresponds to the one used in [7];

(ii) in order for this bound to make sense, we need that

log (pLN ) = o (N) .

The third and final step is to establish a compatibility condition that, when-
ever verified on the event SN , will allow us to bound both the prediction errors{∥∥∥X`;N

(
φ̂lasso
`;N − φ`

)∥∥∥2

2

}
and the estimation errors

{∥∥∥φ̂lasso
`;N − φ`

∥∥∥2

2

}
by the same

quantity. In this sense, it makes the errors compatible.
A symmetric d×d matrix A satisfies the compatibility condition, also called restricted
eigenvalue (RE) condition, with curvature α > 0 and tolerance τ > 0 (A ∼ RE(α, τ)),
if, for any ϑ ∈ Rd,

ϑ′Aϑ ≥ α ‖ϑ‖22 − τ ‖ϑ‖
2
1 . (4.3.9)

The next result gives some sufficient conditions in order to have

Γ̂`;N ∼ RE(α, τ),

for some α and τ , with high probability.

Proposition 4.3.8 (Compatibility condition). Consider the estimation problem
(4.2.1) and assume that Conditions 4.1.3 and 4.1.4 hold. Define qN = max`<LN q`.
There exist some absolute constants c1, c2, c3 > 0 such that, if

N � max
{
ω2
N , 1

}
qN log (pLN ) , with ωN = c3 max

`<LN

µmax;`
µmin;`

, (4.3.10)
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then

P

LN−1⋂
`=0

{
Γ̂`;N ∼ RE(α`, τ`)

} ≥ 1− c1 e
−c2 N min{ω−2

N ,1}, (4.3.11)

with
α` = C`;Z

2µmax;`
, and τ` = α` max

{
ω2
N , 1

} log (pLN )
N

. (4.3.12)

Remark 4.3.9. The results presented in Proposition 4.3.8 also hold for

ωN = c3
max`<LN µmax;`
min`<LN µmin;`

,

analogously to the findings in [7].

Remark 4.3.10. The compatibility condition on Γ̂`;N is a requirement on its smallest
eigenvalue, which can be seen as a measure of the dependence of the random matrix
columns. The sufficient condition (4.3.10) ensures that, with high probability, the
minimum (sample) eigenvalue of the matrix Γ̂`;N is bounded away from zero.

Remark 4.3.11. Note that 0 ≤ FN ≤ F , where F := max`≥0F (φ`, C`;Z) exists
finite. Indeed,

F (φ`, C`;Z) = c0

[
C`;Z

(
1 + 1 + µmax;`

µmin;`

)]
→ 0, `→∞,

since C`;Z converges to zero as ` goes to infinity and a ≤ µmin;` ≤ µmax;` ≤ b, with
a, b positive constants (independent of `), see Remark 4.3.1. Similarly, 0 ≤ ωN ≤ ω,
where

ω := c3 max
`≥0

µmax;`
µmin;`

,

and qN ≤ q := max`≥0 q`. In particular, all the results presented in this chapter
can be stated using F , ω, q instead of FN , ωN , qN . Without loss of generality, we can
assume qN ≥ 1.

4.3.3 Oracle Inequalities

Oracle inequalities are used to estimate the accuracy of the k̂lasso
N . Observe that,

in general, k̂lasso
N depends on the penalty parameter λ, according to (4.2.1). As a

consequence, given a proper choice of λ, oracle inequalities produce upper bounds
for the estimation error with high probability. Such upper bounds are characterized
by a multiplicative factor log(pLN ); roughly speaking, this factor is the cost for not
knowing explicitly the set of nonzero coefficients.

Theorem 4.3.12. Consider the estimation problem (4.2.1) and assume that Con-
ditions 4.1.3 and 4.1.4 hold. Moreover, suppose that, for any ` = 0, . . . , LN − 1,
Γ̂`;N ∼ RE(α`, τ`) with q`τ` ≤ α`/32 and that (Γ̂`;N , γ̂`;N ) satisfies the deviation
condition almost surely, that is,

∥∥∥γ̂`;N − Γ̂`;Nφ`
∥∥∥
∞
≤ FN

√
log (pLN )

N
a.s. (4.3.13)
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Then, for any λN ≥ 4FN
√

log(pLN )/N , where FN := max`<LN F (φ`, C`;Z), any
solution k̂lasso

N of (4.2.1) satisfies

∥∥∥k̂lasso
N − k

∥∥∥2

L2
≤ 18
π2 λ

2
N

LN−1∑
`=0

q`
α2
`

(2`+ 1) +
∥∥∥k − kN∥∥∥2

L2
; (4.3.14)

moreover, under the additional Condition 4.1.5, it holds that

∥∥∥k̂lasso
N − k

∥∥∥
L∞
≤ 3
π
λN

LN−1∑
`=0

√
q`
α`

(2`+ 1) +
∥∥∥k − kN∥∥∥

L∞
. (4.3.15)

Rates of Convergence. To discuss the possible rates of convergence in (4.3.14)-
(4.3.15), let us choose λN = 4FN

√
log(pLN )/N and LN ∼ Nd. Moreover, we impose

some semiparametric structure to the set {φ`;j : ` ≥ 0}, that is,

|φ`;j | ≤ Gj`−βj ,

where βj > 1 and Gj > 0 (see also Chapter 3). Note that, since we are looking at
the asymptotic behaviour as N →∞, the sufficient condition (4.3.10) automatically
holds and the coefficients α` ∼ C`;Z . In particular, a standard assumption for the
behaviour of the power spectrum of a spherical white noise is C`;Z ∼ `−α∗ , with
α∗ > 2, see [43]. As a consequence, in this framework, we have that

∥∥∥k̂lasso
N − k

∥∥∥2

L2
≤ 18
π2 λ

2
N

LN−1∑
`=0

q`
α2
`

(2`+ 1) +
∞∑

`=LN

‖φ`‖22
2`+ 1
8π2

≤ const

 logN
N

LN−1∑
`=0

`2α∗ (2`+ 1) +
∞∑

`=LN

`−2β∗(2`+ 1)


= O

(
logN N2d(α∗+1)−1 +N2d(1−β∗)

)
,

where β∗ = minj=1,...,p βj , and, in order to ensure consistency, we can choose

0 < d <
1

2(α∗ + 1) .

Analogously, imposing this time βj > 2, one has that

∥∥∥k̂lasso
N − k

∥∥∥
L∞
≤ 3
π
λN

LN−1∑
`=0

√
q`
α`

(2`+ 1) +
∞∑

`=LN

‖φ`‖2
2`+ 1

4π

= O
(
(logN)1/2 Nd(α∗+2)−1/2 +Nd(2−β∗)

)
and in this case the consistency in the supremum norm is reached for any

0 < d <
1

2(α∗ + 2) .

We stress that the parameter α∗ can be estimated via a Whittle-like procedure, see
[22, 23] and Remark 3.3.6.
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4.4 Some Numerical Results
In this Section we will describe the numerical implementation to support the results
provided along the chapter. More specifically, here we briefly discuss the performance
of the LASSO estimator k̂lasso

N under sparsity assumptions.
Fixed N = 300 and LN = L = 50, we are concerned with the empirical evaluation of
the L2-risk of k̂lasso

N for the penalty parameters λi = 10i−6, i = 1, . . . , 6, in comparison
with the one of the non-penalized estimator described in Chapter 3 (see also [18]),
corresponding to the case λ0 = 0. We remark that our simulations can be considered
as a hint, in view of future applications on real data. In what follows, we consider
four different case studies, all belonging to the class of SPHAR(2) processes, so that
(4.1.1) becomes

T (x, t) = Φ1 (T (·, t− 1)) (x) + Φ2 (T (·, t− 2)) (x) + Z (x, t) .

In the first case, the random field T1 is strongly sparse, in the sense that the only
non-null eigenvalues are

φ2;1 = −0.7, φ3;2 = 0.5.

In the second case, the random field T2 is characterized by less sparsity; in particular,
the non-null coefficients are

φ30;1 = −0.72, φ31;1 = 0.31, φ32;1 = 0.85, φ2,2 = 0.25, φ3,2 = −0.87, φ5,2 = −0.98.

In the third case, the random field T3 is not sparse, even if the eigenvalues are taken
to be relevant only on the first 20 multipoles, that is, φ`,j ∝ `−2 for ` ≥ 20 and
j = 1, 2. Finally, in the fourth case T4, all the multipoles are assumed to be relevant.

MSE T1 T2 T3 T4
λ0 0.00218 0.00212 0.00189 0.00143
λ1 0.00214 0.00208 0.00185 0.00144
λ2 0.00181 0.00175 0.00153 0.00149
λ3 0.00083 0.00087 0.00071 0.00650
λ4 0.00032 0.00478 0.00190 0.46580
λ5 0.00015 0.15363 0.10620 7.32961
λ6 0.00049 0.53786 1.57303 15.18901

Table 4.1. Values of the mean squared error (MSE) for the four case studies T1, . . . , T4,
by varying the penalty parameter λ. Note that λ0 corresponds to the non-penalized
estimation.

Table 4.1 collects the values of the empirical mean squared error (MSE) associated
with the four models of interest. In particular, for B = 1000 replications, we have

MSE
(
k̂lasso
N , k

)
=

2∑
j=1

 1
B ·G

B∑
b=1

G∑
g=1

(
k̂lasso
j (zg)− kj(zg)

)2
 ,

where {z1, . . . , zG}, G = 2000, is an equally spaced grid over [−1, 1]. As expected,
LASSO-type estimators provide smaller MSE when we consider highly sparse models
(T1 and T2). Regarding T3, the situation does not really change because, after the
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20-th multipole, the values of the eigenvalues are very small. On the contrary, for
the model T4, the penalized estimator always performs poorly when λ grows. Note
that for λ = λ1 the penalization is very small and, as a consequence, the penalized
and non-penalized estimators are almost equivalent.

Figure 4.1. Five estimates (orange lines) of k2 for the model T1, with λ = λ5. The true k2
is the blue dashed line.

Figure 4.2. Five estimates (orange lines) of k2 for the model T2, with λ = λ3. The true k2
is the blue dashed line.

Figure 4.3. Five estimates (orange lines) of k2 for the model T3, with λ = λ3. The true k2
is the blue dashed line.
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Figures 4.1-4.3 illustrate the functional forms of the estimated kernel, compared
to the real one. The left panels present the non-penalized estimates of k2 while
the right panels contain the corresponding penalized ones. Heuristically, the (best)
penalized estimates for T1 and T2 reconstruct the true kernel function better than the
non-penalized ones, which show an oscillatory behavior (undersmoothing) due to the
lack of selection of the relevant multipoles. For the model T3, which is non-sparse but
has few relevant multipoles, the difference between the two functional estimations is
not significant.

4.5 Proofs
In the present section we prove the bounds showed in Section 4.3.2 as well as our
main theorem. Many of the proofs have arguments which are broadly similar to
those given for related results in [7].

Proof of Proposition 4.3.2. Let us define J = supp(v) = {j1, . . . , jr} ⊂ {1, . . . , p},
r ≥ 1, and

W`,J = X`;Nv =
∑
j∈J

vjY`;N (j) .

Then, Q`,J = E
[
W`,JW

′
`,J

]
= B`,J ⊗ I2`+1, where B`,J is the covariance matrix of

the random vector

∑
j∈J

vj

 a`,m(n− j)
...

a`,m(p+ 1− j)

 , for any m = −`, . . . , `.

As a consequence, ‖Q`,J‖op = ‖B`,J‖op ≤ 2πM(f̃`, r) (see [7, Proposition 2.4]) and
(4.3.3) is proved. To prove (4.3.4), note that

2
∣∣∣u′ (Γ̂`;N − Γ`

)
v
∣∣∣ ≤ ∣∣∣u′ (Γ̂`;N − Γ`

)
u
∣∣∣+ ∣∣∣v′ (Γ̂`;N − Γ`

)
v
∣∣∣+ ∣∣∣(u+ v)′

(
Γ̂`;N − Γ`

)
(u+ v)

∣∣∣ ,
and u + v is 2r-sparse with |u+ v| ≤ 2. The result follows by applying (4.3.3)
separately on each of the three terms on the right. The element-wise deviation
bound (4.3.5) is obtained by choosing u = ei, v = ej .
Let us now prove (4.3.6). Recall (4.3.2); the following decomposition holds

2
N(2`+ 1)

∑̀
m=−`

n∑
t=p+1

a`,m(t− h)a`,m;Z(t)

=

 1
N(2`+ 1)

∑̀
m=−`

n∑
t=p+1

(a`,m(t− h) + a`,m;Z(t))2 − (C` + C`;Z)


−
[

1
N(2`+ 1)

∑̀
m=−`

n∑
t=p+1

a`,m(t− h)2 − C`

]

−
[

1
N(2`+ 1)

∑̀
m=−`

T∑
t=p

a`,m;Z(t)2 − C`;Z

]
.
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Implementing (4.3.3) for v = eh, we have

P

∣∣∣∣∣∣ 1
N(2`+ 1)

∑̀
m=−`

n∑
t=p+1

a`,m(t− h)2 − C`

∣∣∣∣∣∣ > 2πM(f̃`, 1)η

 ≤ 2e−cN(2`+1) min{η2,η} ,

which implies

P

∣∣∣∣∣∣ 1
N(2`+ 1)

∑̀
m=−`

n∑
t=p+1

a`,m(t− h)2 − C`

∣∣∣∣∣∣ > 2πM(f`)η

 ≤ 2e−cN(2`+1) min{η2,η} ,

where we used the fact thatM(f̃`, 1) =M(f`). Following steps that are analogous
to the ones that led to (4.3.3) (setting v ∈ R, v = 1, and obviously r = 1), one can
show that

P

∣∣∣∣∣∣ 1
N(2`+ 1)

∑̀
m=−`

n∑
t=p+1

a`,m;Z(t)2 − C`;Z

∣∣∣∣∣∣ > 2πM(f`;Z)η

 ≤ 2e−cN(2`+1) min{η2,η} ,

and that, for any fixed h = 1, . . . , p,

P

∣∣∣∣∣∣ 1
N(2`+ 1)

∑̀
m=−`

n∑
t=p+1

(a`,m(t− h) + a`,m;Z(t))2 − (C` + C`;Z)

∣∣∣∣∣∣ > 2πM(f`;T+Z)η


≤ 2e−cN(2`+1) min{η2,η} .

Moreover,
f`;T+Z(λ) = f`(λ) + f`;Z(λ) + 2f`;(T,Z)(λ) ,

which implies, M(f`;T+Z) ≤ M(f`) +M(f`;Z) +M(f`;(T,Z)), where f`;T+Z(λ) is
the spectral density of the process {a`,m(t− h) + a`,m;Z(t), t ∈ Z} and f`;(T,Z) is the
spectral density of the joint process {(a`,m(t− h), a`,m;Z(t)) , t ∈ Z}.
Now, using the obvious implications

{|X1 +X2 +X3| > a} ⊂ {|X1|+ |X2|+ |X3| > a} ⊂
3⋃
i=1

{
|Xi| >

a

3

}
,

we have that

P

∣∣∣∣∣∣ 2
N(2`+ 1)

∑̀
m=−`

n∑
t=p+1

a`,m(t− h)a`,m;Z(t)

∣∣∣∣∣∣ > 2π
(
M(f`) +M(f`;Z) +M(f`;(T,Z))

)
η


≤ 6e−cN(2`+1) min{η2,η} ,

Following the last steps of the proof of Proposition 2.4 in [7], we obtain

2πM(f`) ≤
C`;Z
µmin;`

, 2πM(f`;Z) = C`;Z and 2πM
(
f`;(T,Z)

)
≤ C`;Z µmax;`

µmin;`
,

which finally implies (4.3.6).
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Proof of Proposition 4.3.4. Since φ̂lasso
`;N is the solution of the minimization problem

(4.2.3), we have that∥∥∥Y`;N −X`;N φ̂
lasso
`;N

∥∥∥2

2
N(2`+ 1) + λ

N

∥∥∥φ̂lasso
`;N

∥∥∥
1
≤
‖Y`;N −X`;Nφ`‖22

N(2`+ 1) + λ

N
‖φ`‖1 ,

which, using the definition of Y`;N , becomes∥∥∥X`;Nφ` + E`;N −X`;N φ̂
lasso
`;N

∥∥∥2

2
N(2`+ 1) + λ

N

∥∥∥φ̂lasso
`;N

∥∥∥
1
≤
‖E`;N‖22
N(2`+ 1) + λ

N
‖φ`‖1 .

Now, we have∥∥∥X`;Nφ` −X`;N φ̂
lasso
`;N

∥∥∥2

2
N(2`+ 1) +

‖E`;N‖22
N(2`+ 1) − 2

(
φ̂lasso
`;N − φ`

)′
X ′`;NE`;N

N(2`+ 1) + λ

N

∥∥∥φ̂lasso
`;N

∥∥∥
1

≤
‖E`;N‖22

T
+ λ

N
‖φ`‖1

and finally, using the notation v`,

v′`X
′
`;NX`;Nv`

N(2`+ 1) − 2
v′`X

′
`;NE`;N

N(2`+ 1) + λ

N

∥∥∥φ̂lasso
`;N

∥∥∥
1
≤ λ

N
‖φ`‖1 .

Proof of Proposition 4.3.6. First of all, we have∥∥∥γ̂`;N − Γ̂`;Nφ`
∥∥∥
∞

= 1
N(2`+ 1)

∥∥∥X ′`;NE`;N∥∥∥∞ = max
1≤h≤p

∣∣∣∣∣Y
′
`;N (h)E`;N
N(2`+ 1)

∣∣∣∣∣ .
Now, using (4.3.6), we obtain that, for any η ≥ 0 and c > 0,

P
(∣∣∣∣∣Y

′
`;N (h)E`;N
N(2`+ 1)

∣∣∣∣∣ > C`;Z

(
1 + 1 + µmax;`

µmin;`

)
η

)
≤ 6 exp

(
−cN(2`+ 1) min

{
η, η2

})
.

Thus it follows that

P
(

max
1≤h≤p

∣∣∣∣∣Y
′
`;N (h)E`;N
N(2`+ 1)

∣∣∣∣∣ > C`;Z

(
1 + 1 + µmax;`

µmin;`

)
η

)

≤ 6 p exp
(
−cN(2`+ 1) min

{
η, η2

})
.

Since, for every ` < LN ,

c0C`;Z

(
1 + 1 + µmax;`

µmin;`

)
≤ FN ,

we have

P
(

max
`<LN

max
1≤h≤p

∣∣∣∣∣Y
′
`;N (h)E`;N
N(2`+ 1)

∣∣∣∣∣ > 1
c0
FNη

)
≤ 6 pLN exp

(
−cN min

{
η, η2

})
.
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Hence, for η = c0

√
log pLN
N ,

P

LN−1⋂
`=0

∥∥∥γ̂`;N − Γ̂`;Nφ`
∥∥∥
∞
≤ FN

√
log pLN
N


= P

max
`<LN

∥∥∥γ̂`;N − Γ̂`;Nφ`
∥∥∥
∞
≤ FN

√
log pLN
N


= P

max
`<LN

max
1≤h≤p

∣∣∣Y ′`;N (h)E`;N
∣∣∣ ≤ FN

√
log pLN
N


≥ 1− 6 pLN exp

−cN min

c0

√
log pLN
N

, c2
0

log pLN
N




≥ 1− 6 pLN exp
(
−cN min

{
c0, c

2
0

} log pLN
N

)
= 1− 6 pLN e−c min{c0,c2

0} log pLN

= 1− 6 e−(c min{c0,c2
0}−1) log pLN ,

and the statement is proved with c1 = 6, c2 = c min
{
c0, c

2
0
}
− 1, where c0 is any

positive constant that satisfies c2 > 0.

Proof of Proposition 4.3.8. Our goal is to prove (4.3.11), which can be rewritten as
follows

P

LN−1⋂
`=0

A`

 ≥ 1− c1 e
−c2 N min{ω−2,1} ,

where A` =
{
v′`Γ̂`;Nv` ≥ α` ‖v`‖

2
2 − τ` ‖v`‖

2
1 , ∀ v` ∈ Rp

}
.

We start from Equation (4.3.3), and considering that

2πM(f̃`, r) ≤ 2πM(f̃`) ≤ p 2πM(f`) ≤ p
C`;Z
µmin;`

, r ≥ 1,

we have

P
(∣∣∣v′` (Γ̂`;N − Γ`

)
v`
∣∣∣ > pC`;Z

µmin;`
η

)
≤ 2e−cN(2`+1) min{η2,η} .

Using Lemma F.2 in the supplementary material of [7] yields

P
(

sup
v`∈K (2s)

∣∣∣v′` (Γ̂`;N − Γ`
)
v`
∣∣∣ > η

pC`;Z
µmin;`

)
≤ 2e−cN(2`+1) min{η2,η}+2smin{log p,log( 21 e p

2s )} .

where K (2s) = {v ∈ Rp : ‖v‖2 ≤ 1, ‖v‖0 ≤ 2s}, for an integer s ≥ 1. Now we set

c3 = 54 and η = ω−1
` = 1

54 p
µmin;`
µmax;`
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to obtain

P
(

sup
v`∈K (2s)

∣∣∣v′` (Γ̂`;N − Γ`
)
v`
∣∣∣ ≤ 1

54
C`;Z
µmax;`

)

≥ 1− 2e−cN(2`+1) min{1,ω−2
` }+2smin{log p,log( 21 e p

2s )}

and we apply Lemma 12 of the supplementary material of [40] to get

P
(∣∣∣v′` (Γ̂`;N − Γ`

)
v`
∣∣∣ ≤ 1

2
C`;Z
µmax;`

{
‖v`‖22 + 1

s
‖v`‖21

}
, ∀ v` ∈ Rp

)

≥ 1− 2e−cN(2`+1) min{1,ω−2
` }+2smin{log p, log( 21 e p

2s )} .

Moreover, it holds that∣∣∣v′` (Γ̂`;N − Γ`
)
v`
∣∣∣ =

∣∣∣v′`Γ̂`;Nv` − v′`Γ`v`∣∣∣ =
∣∣∣v′`Γ`v` − v′`Γ̂`;Nv`∣∣∣ ≥ ∣∣v′`Γ`v`∣∣− ∣∣∣v′`Γ̂`;Nv`∣∣∣

≥ Λmin (Γ`) ‖v`‖22 −
∣∣∣v′`Γ̂`;Nv`∣∣∣ ≥ C`;Z

µmax;`
‖v`‖22 −

∣∣∣v′`Γ̂`;Nv`∣∣∣
= C`;Z
µmax;`

‖v`‖22 − v
′
`Γ̂`;Nv` ,

which implies

P
(
C`;Z
µmax;`

‖v`‖22 − v
′
`Γ̂`;Nv` ≤

1
2
C`;Z
µmax;`

{
‖v`‖22 + 1

s
‖v`‖21

}
, ∀ v` ∈ Rp

)

≥ 1− 2e−cN(2`+1) min{1,ω−2
` }+2smin{log p, log( 21 e p

2s )} .

Hence, we can rearrange the terms in the previous relation to have

P
(
v′`Γ̂`;Nv` ≥

1
2
C`;Z
µmax;`

‖v`‖22 −
1
2s

C`;Z
µmax;`

‖v`‖21 , ∀ v` ∈ Rp
)

≥ 1− 2e−cN(2`+1) min{1,ω−2
` }+2smin{log p, log( 21 e p

2s )} .

Now, taking ωN = max`<LN ω`, we obtain

P

LN−1⋃
`=0

A`

 ≤ LN−1∑
`=0

[1− P (A`)] ≤ 2e
−cN min{1,ω−2

N }+2smin
{

log pLN , log
(

21 e pLN
2s

)}
,

which is the desired conclusion, once we set

s =
cN min

{
ω−2
N , 1

}
4 log pLN

.
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Proof of Theorem 4.3.12. Set v` = φ̂lasso
`;N − φ`. Using the basic inequality (4.3.7)

and the deviation condition (4.3.13), we obtain that, almost surely,

v′`Γ̂`;Nv` ≤ 2v′`
(
γ̂`;N − Γ̂`;Nφ`

)
+ λN (‖φ`‖1 − ‖φ` + v`‖1)

≤ 2 ‖v`‖1
∥∥∥γ̂`;N − Γ̂`;Nφ`

∥∥∥
∞

+ λN (‖φ`‖1 − ‖φ` + v`‖1)

≤ 2 ‖v`‖1FN

√
log(pLN )

N
+ λN (‖φ`‖1 − ‖φ` + v`‖1) . (4.5.1)

Now, let J = supp(φ`) = {j1, . . . , jq`} be such that |J | = q`, then Jc = {1, . . . , p}\J ,
‖φ`,J‖1 = ‖φ`‖1 and ‖φ`,Jc‖1 = 0. Consequently, it holds that

‖φ` + v`‖1 = ‖φ`,J + v`,J‖1 + ‖v`,Jc‖1
≥ ‖φ`,J‖1 − ‖v`,J‖1 + ‖v`,Jc‖1 ,

which implies

λN (‖φ`‖1 − ‖φ` + v`‖1) ≤ λN
(
‖φ`,J‖1 − ‖φ`,J‖1 + ‖v`,J‖1 − ‖v`,Jc‖1

)
≤ λN

(
‖v`,J‖1 − ‖v`,Jc‖1

)
.

Having explicitly required that λN ≥ 4FN
√

log(pLN )/N , Equation (4.5.1) becomes

0 ≤ v′`Γ̂`;Nv` ≤
λN
2 ‖v`‖1 + λN

(
‖v`,J‖1 − ‖v`,Jc‖1

)
= λN

2
(
‖v`,J‖1 + ‖v`,Jc‖1

)
+ λN

(
‖v`,J‖1 − ‖v`,Jc‖1

)
= 3λN

2 ‖v`,J‖1 −
λN
2 ‖v`,J

c‖1 ≤
3
2λN ‖v`‖1 . (4.5.2)

This ensures that ‖v`,Jc‖1 ≤ 3 ‖v`,J‖1 and hence, adding ‖v`,J‖1 on both sides, that
‖v`‖1 ≤ 4 ‖v`,J‖1, which implies

‖v`‖1 ≤ 4√q` ‖v`‖2 ,

from Cauchy-Schwartz inequality.
Now we use this property into the (RE) inequality (4.3.9), keeping in mind that we
specifically required that q`τ` ≤ α`/32, and we obtain

v′`Γ̂`;Nv` ≥ α` ‖v`‖
2
2 − τ` ‖v`‖

2
1 ≥ α` ‖v`‖

2
2 − 16q`τ` ‖v`‖22

≥ α` ‖v`‖22 −
α`
2 ‖v`‖

2
2 ≥

α`
2 ‖v`‖

2
2 . (4.5.3)

Hence, combining Equation (4.5.2) and (4.5.3), we get

α`
2 ‖v`‖

2
2 ≤ v

′
`Γ̂`;Nv` ≤

3
2λN ‖v`‖1 ≤ 6√q` λN ‖v`‖2 ,

which results in the following estimate for the norm of the error
α`
3 ‖v`‖

2
2 ≤ λN ‖v`‖1 ≤ 4√q` λN ‖v`‖2 .
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As a consequence,

‖v`‖2 ≤ 12√q`
λN
α`

, (4.5.4)

‖v`‖1 ≤ 4√q` ‖v`‖2 ≤ 48 q`
λN
α`

, (4.5.5)

v′`Γ̂`;Nv` ≤
3
2λN ‖v`‖1 ≤ 72 λ

2
N

α`
. (4.5.6)

Following similar arguments as in the proof of Theorem 3.3.4, previous chapter, it is
readily seen that

∥∥∥k̂lasso
N − k

∥∥∥2

2
=

LN−1∑
`=0
‖v`‖22

2`+ 1
8π2 +

∥∥∥k − kN∥∥∥2

L2
,

by the orthonormality of Legendre polynomials (see (1.2.2)), and that

∥∥∥k̂lasso
N − k

∥∥∥
L∞
≤

LN−1∑
`=0
‖v`‖2

2`+ 1
4π +

∥∥∥k − kN∥∥∥
L∞
,

by the triangle inequality. Then, using 4.5.4, the proof is concluded.
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Appendix A

HEALPix Tutorial

A.1 Installation Procedure

healpy is a Python package based on the Hierarchical Equal Area isoLatitude Pix-
elization (HEALPix) scheme, see [27]. It depends on the HEALPix C++ and cfitsio
C libraries, whose source code is included with healpy and is built automatically
during its installation. Only Linux and MAC OS X are supported, not Windows.
Here we just report the procedure for the binary installation with conda, which is
also recommended by the package developers.
Conda forge provides a conda channel with a pre-compiled version of healpy for
Linux 64-bit and MAC OS X platforms; to install it in Anaconda, just open your
terminal and write the following lines:
conda config --add channels conda -forge
conda install healpy

see https://healpy.readthedocs.io/en/latest/install.html for other types
of installation.

A.2 Packages

First, import the Python packages necessary to run the commands that will follow.
import healpy as hp

# import the module for simulating AR(p) processes
import statsmodels .api as sm

import numpy as np
import math as math
import matplotlib . pyplot as plt
from matplotlib import cm

% matplotlib inline

Note: The inline backend of maptlotlib is added to display the plots next to
the code. For this reason it is recommended to use an IPython shell or a Jupyter
notebook.

https://anaconda.org/conda-forge/healpy
https://healpy.readthedocs.io/en/latest/install.html
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A.3 Basics on HEALPix Maps
Maps are simply numpy arrays of Npix elements, where each element refers to
a location in the sky as defined by the HEALPix pixelization schemes (see the
HEALPix website). The same pixels in the map can be ordered in 2 ways, either
RING or NESTED. Here, we focus on RING ordering since in this case spherical
harmonics transforms are easy to implement.
In the RING scheme, pixels are numbered moving down from the North to the South
Pole along rings of constant latitude:
N_pix = 48

m = np. arange (N_pix)
hp. mollview (m, title=" Mollview image RING")

However, NESTED ordering is displayed by passing the nest = True argument to
the healpy.visufunc.mollview function, as well as the most healpy routines.
Recall that the spherical coordinates are the colatitude ϑ, 0 at the North Pole, π/2
at the equator, and π at the South Pole and the longitude φ between 0 and 2π
eastward. In a standard Mollweide projection (Galactic coordinates), φ = 0 is at the
center and increases eastward toward the left of the map.
Now, we are going to work with real maps to understand their structure. The next line
will automatically execute in Terminal the bash script healpy_get_wmap_maps.sh
(which should be available in the path; if not, install the latest version of healpy),
and download the higher resolution WMAP data into the current directory.
! healpy_get_wmap_maps .sh

According to HEALPix convention, data are stored in FITS format, which is the
most commonly used digital file format in astronomy.
The function healpy.fitsfunc.read_map read a HEALPix map from a FITS file.
wmap_map_I = hp. read_map (" wmap_band_iqumap_r9_7yr_W_v4 .fits")

https://healpix.jpl.nasa.gov/
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NSIDE = 512
ORDERING = NESTED in fits file
INDXSCHM = IMPLICIT
Ordering converted to RING

By default, read_map loads the first column and convert the input map to RING
ordering, even if it was stored as NESTED. Its resolution, and hence the number
of pixels it contains, is defined through the Nside parameter, which is generally a
power of 2:
N_side = hp. get_nside ( wmap_map_I )
print( N_side )

512

For a given Nside, a HEALPix map contains 12N2
side pixels placed on 4Nside − 1

iso-latitude rings.
N_pix = hp. nside2npix ( N_side )
print(N_pix)

3145728

A.4 Simulations
Now, we are ready to simulate a map. Thus, we first need a power spectrum {C`}.
Note that we create a numpy array by setting

C` = 1
`(`+ 1) , 0 < ` ≤ 3000;

of course this model would not be acceptable for the full range of multipoles, because
the resulting field would not have finite variance. However, this is not an issue here
because we are considering only a finite range of values (otherwise, we can implicitly
assume that, for greater `’s, the sequence decreases at a faster rate).
L = 3000

cl = [1]
cl [1:L] = [1 / (l * (l + 1)) for l in range (1, L + 1)]

cl = np. asarray (cl)

# Writes the array cl into a healpix file named cl.fits
# hp. write_cl ("cl.fits", cl , overwrite = True)

The desired output is obtained by first simulating the spherical random coefficients
{a`,m} up to the maximum multipole Lmax = 1000 (healpy.sphtfunc.synalm), and
then by creating a map at Nside = 512 (healpy.sphtfunc.alm2map). The keyword
new = True returns a numpy array of {a`,m} sorted according the new HEALPix
order, that is, (a0,0, a1,0, a2,0, . . . , a1,1, a2,1, . . . aLmax,Lmax).
L_max = 1000
N_side = 512
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alm = hp. synalm (cl , lmax = L_max , new = True)

field = hp. alm2map (alm , nside = N_side )
hp. mollview (field , title = " Simulated map at NSIDE = %i" % N_side )

# This command is equivalent to the previous one.
# field , alm = hp. synfast (cl , nside = N_side , lmax = L_max , alm =

True , new = True)

write_map writes the output map to disk in FITS format:
hp. write_map (" my_map .fits", field , overwrite =True)

A.5 Direct and Inverse Spherical Harmonic Transforms
As anticipated, healpy provides bindings to the C++ HEALPIX library for per-
forming spherical harmonic transforms. It is then possible to extract the spher-
ical harmonic coefficients {a`,m} from a map, and vice versa, using the routines
healpy.sphtfunc.alm2map and healpy.sphtfunc.map2alm.
In practice, given the locations x0, . . . , xNpix−1 where the signal is observed, it is
possible to compute

â`,m = 4π
Npix

Npix−1∑
p=0

T (xp)Y`,m(xp) and Ĉ` = 1
2`+ 1

∑̀
m=−`

|â`,m|2.

alm_hat = hp. map2alm (field , lmax = L_max)
cl_hat = hp. alm2cl ( alm_hat )

As a rule, you can use Lmax ≈ 2Nside, that is, the maximum multipole for which
the a`,m’s are computed with high precision − e.g., Lmax ≈ 1000 for Nside = 512.
For higher multipoles, the precision is gradually lost until Lmax = 3Nside. For more
information see the HEALPix primer.

https://healpix.jpl.nasa.gov/pdf/intro.pdf
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A.6 Simulating Spherical Functional Autoregressions
Here, we provide the code to simulate from a spherical functional autoregressive
process of order p (see [18]). The function sphar_p collects the simulated harmonic
coefficients {a`,m(t)} in a list of length L; the l-th element of the list a numpy array
of shape (n_series, l+1).
def sphar_p (L, n_series , phi , Cz , p):

data = [0]*L

for l in range (0, L):

arp = np. insert (-phi[l], 0, 1)
ma1 = np.array ([1])
# Both the AR and MA components
# should include the coefficient on the zero -lag.
# The AR parameters should have
# the opposite sign of what you might expect .

al0 = sm.tsa. arma_generate_sample (arp , ma1 ,
nsample = n_series ,
sigma = math.sqrt(Cz[l]))

data[l] = al0 + 1j*0

if l!=0:
for m in range (0,l):

Re_alm = sm.tsa. arma_generate_sample (arp , ma1 ,
nsample = n_series ,
sigma = math.sqrt(Cz[l]/2))

Im_alm = sm.tsa. arma_generate_sample (arp , ma1 ,
nsample = n_series ,
sigma = math.sqrt(Cz[l]/2))

data[l] = np. column_stack (( data[l],
Re_alm + 1j* Im_alm ))

return data

The example below shows simulation from a SPHAR(1) process for a particular
choice of the sequence of parameters {φ`}. The variances of the non-null components
(multipoles ` = 3, 90) are set to be approximately equals.
L = 100
n_series = 50

phi = [0]*L
phi [3] = 0.95
phi [90] = -0.95

Cz = [0]*L
Cz [3] = 25
Cz [90] = 1

data = sphar_p (L, n_series , phi , Cz , p = 1)
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Once obtained the output, we can plot the spherical maps T (·, t) for given time
points, say t ∈ {tmin, . . . , tmax − 1}. The harmonic coefficients are sorted according
to new HEALPix order.
# Colour palettes
cool_cmap = cm. CMRmap
cool_cmap . set_under ("w") # sets background to white

t_min = 1
t_max = 5

for t in range(t_min , t_max):
At = [item [(t,)] for item in data]

n_iter = int(L*(L+1) /2)
At_sort = np.zeros(n_iter ,dtype=np. complex_ )

k=0
for j in range (0, L):

for i in range (0, L - j):
if j==0 and i==0:

At_sort [k] = At [0]

else:
k=k+1
At_sort [k] = At[i+j][j]

field = hp. alm2map (At_sort , lmax = L-1, nside = 128)
hp. mollview (field , cmap = cool_cmap , title = ’Time t = %i’ %t)
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If we focus our attention to a single big blue spot, what immediately can be noticed
is that it is preserved over time. Contrary, the small regions change rapidly their
color. This is because we simulate the fields setting a coefficient φ` = 0.95 (strongly
positive correlation) for a low frequency ` = 3 (large scale) and φ` = −0.95 (strongly
negative correlation) for a higher frequency ` = 90 (small scale).

A.7 Visualization

The Mollweide projection introduced above with mollview is the most common
visualization tool for HEALPix maps. The function contains many arguments which
allow to customize the visualization through graphical parameter. For instance,
cool_cmap = cm. Spectral_r
cool_cmap . set_under ("w") # sets background to white

# print(cm. cmap_d .keys ())

hp. mollview (
wmap_map_I ,
coord = ["G", "E"],
title = " Histogram equalized Ecliptic ",
unit = "mK",
norm = "hist",
min = -1,
max = 1,
cmap = cool_cmap )

hp. graticule ()

coord = ["G", "E"] rotate the map from the first (Galactic) to the second (Ecliptic)
coordinate system; norm = ’hist’ sets a histogram equalized color scale from min =
-1 to max = 1; graticule adds meridians and parallels. print(cm.cmap_d.keys())
shows all the possible colour palettes.
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However, there exists other types of visualization functions; an example is given by
healpy.visufunc.orthview (see also the healpy documentation):
hp. orthview (

wmap_map_I ,
unit = "mK",
norm = "hist",
min = -1,
max = 1,
cmap = cool_cmap )

hp. graticule ()

https://healpy.readthedocs.io/en/latest/healpy_visu.html
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